These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35464211)

  • 1. Study of the Adsorption Behavior of Surfactants on Carbonate Surface by Experiment and Molecular Dynamics Simulation.
    Hou J; Lin S; Du J; Sui H
    Front Chem; 2022; 10():847986. PubMed ID: 35464211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Effect of Nanofluids and Surfactants on Heavy Oil Recovery and Oil-Wet Calcite Wettability.
    Hou J; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spotlight on the New Natural Surfactant Flooding in Carbonate Rock Samples in Low Salinity Condition.
    Ahmadi MA; Shadizadeh SR
    Sci Rep; 2018 Jul; 8(1):10985. PubMed ID: 30030463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of wettability alteration using surfactants in carbonate reservoirs.
    Yao Y; Wei M; Kang W
    Adv Colloid Interface Sci; 2021 Aug; 294():102477. PubMed ID: 34242888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies.
    Dordzie G; Dejam M
    Adv Colloid Interface Sci; 2021 Jul; 293():102449. PubMed ID: 34034208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Surface Active Ionic Liquids on Different Rock Types under High Salinity Conditions.
    Nandwani SK; Chakraborty M; Gupta S
    Sci Rep; 2019 Oct; 9(1):14760. PubMed ID: 31611581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery.
    Liu Z; Zhao G; Brewer M; Lv Q; Sudhölter EJR
    Adv Colloid Interface Sci; 2021 Aug; 294():102467. PubMed ID: 34175528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Mar; 609():890-900. PubMed ID: 34848057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-enabled delivery of surfactants in porous media.
    Nourafkan E; Hu Z; Wen D
    J Colloid Interface Sci; 2018 Jun; 519():44-57. PubMed ID: 29482096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A positively charged calcite surface model for molecular dynamics studies of wettability alteration.
    Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2020 Jun; 569():128-139. PubMed ID: 32105900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactants Enhanced Heavy Oil-Solid Separation from Carbonate Asphalt Rocks-Experiment and Molecular Dynamic Simulation.
    Hou J; Du J; Sui H; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal scaling of adsorption of nonionic surfactants on carbonates using cloud point temperatures.
    Das S; Katiyar A; Rohilla N; Nguyen Q; Bonnecaze RT
    J Colloid Interface Sci; 2020 Oct; 577():431-440. PubMed ID: 32505003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability Alteration and Adsorption of Mixed Nonionic and Anionic Surfactants on Carbonates.
    Das S; Katiyar A; Rohilla N; Nguyen QP; Bonnecaze RT
    Langmuir; 2020 Dec; 36(50):15410-15422. PubMed ID: 33290072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of wettability alteration, IFT reduction, and injection schemes during surfactant/smart water flooding for EOR application.
    Noorizadeh Bajgirani SS; Saeedi Dehaghani AH
    Sci Rep; 2023 Jul; 13(1):11362. PubMed ID: 37443172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of surfactant formulation for high-temperature off-shore carbonate reservoirs.
    Panthi K; Mohanty KK
    Front Chem; 2024; 12():1408115. PubMed ID: 39170870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of low salinity surfactant nanofluids with carbonate surfaces and molecular level dynamics at fluid-fluid interface at ScCO
    Jha NK; Ivanova A; Lebedev M; Barifcani A; Cheremisin A; Iglauer S; Sangwai JS; Sarmadivaleh M
    J Colloid Interface Sci; 2021 Mar; 586():315-325. PubMed ID: 33148450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel.
    Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W
    Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic adsorption of a gemini surfactant on a carbonate rock in the presence of low salinity water.
    Kalam S; Abu-Khamsin SA; Gbadamosi AO; Patil S; Kamal MS; Hussain SMS; Al-Shehri D; Al-Shalabi EW; Mohanty KK
    Sci Rep; 2023 Jul; 13(1):11936. PubMed ID: 37488132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ethylene oxide groups on calcite wettability reversal by nonionic surfactants: An experimental and molecular dynamics simulation investigation.
    Tetteh J; Kubelka J; Qin L; Piri M
    J Colloid Interface Sci; 2024 Dec; 676():408-416. PubMed ID: 39033675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.