These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35464314)
1. ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition. Datta G; Kundu S; Jaiswal AR; Beerel PA Front Neurosci; 2022; 16():815258. PubMed ID: 35464314 [TBL] [Abstract][Full Text] [Related]
2. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization. Rathi N; Roy K IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559 [TBL] [Abstract][Full Text] [Related]
3. SpQuant-SNN: ultra-low precision membrane potential with sparse activations unlock the potential of on-device spiking neural networks applications. Hasssan A; Meng J; Anupreetham A; Seo JS Front Neurosci; 2024; 18():1440000. PubMed ID: 39296710 [TBL] [Abstract][Full Text] [Related]
4. SPIDEN: deep Spiking Neural Networks for efficient image denoising. Castagnetti A; Pegatoquet A; Miramond B Front Neurosci; 2023; 17():1224457. PubMed ID: 37638316 [TBL] [Abstract][Full Text] [Related]
5. Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN. Hu Y; Zheng Q; Jiang X; Pan G IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14546-14562. PubMed ID: 37721891 [TBL] [Abstract][Full Text] [Related]
6. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware. Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R Front Neurosci; 2021; 15():694170. PubMed ID: 34867142 [TBL] [Abstract][Full Text] [Related]
7. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training. Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L Front Neurosci; 2021; 15():756876. PubMed ID: 34803591 [TBL] [Abstract][Full Text] [Related]
8. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network. Wu D; Yi X; Huang X Front Neurosci; 2022; 16():759900. PubMed ID: 35692427 [TBL] [Abstract][Full Text] [Related]
9. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms. Syed T; Kakani V; Cui X; Kim H Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080 [TBL] [Abstract][Full Text] [Related]
10. Quantization Framework for Fast Spiking Neural Networks. Li C; Ma L; Furber S Front Neurosci; 2022; 16():918793. PubMed ID: 35928011 [TBL] [Abstract][Full Text] [Related]
11. Training much deeper spiking neural networks with a small number of time-steps. Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953 [TBL] [Abstract][Full Text] [Related]
12. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing. Kim Y; Panda P Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827 [TBL] [Abstract][Full Text] [Related]
13. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling. Dorzhigulov A; Saxena V Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034 [TBL] [Abstract][Full Text] [Related]
14. High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron. Gao H; He J; Wang H; Wang T; Zhong Z; Yu J; Wang Y; Tian M; Shi C Front Neurosci; 2023; 17():1141701. PubMed ID: 36968504 [TBL] [Abstract][Full Text] [Related]
15. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning. Kim D; Chakraborty B; She X; Lee E; Kang B; Mukhopadhyay S Front Neurosci; 2022; 16():775457. PubMed ID: 35478844 [TBL] [Abstract][Full Text] [Related]
16. CQ Yan Z; Zhou J; Wong WF IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):11600-11611. PubMed ID: 37314899 [TBL] [Abstract][Full Text] [Related]
17. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator. Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405 [TBL] [Abstract][Full Text] [Related]
18. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification. Ju X; Fang B; Yan R; Xu X; Tang H Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174 [TBL] [Abstract][Full Text] [Related]
19. Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase. Chen X; Yuan X; Fu G; Luo Y; Yue T; Yan F; Wang Y; Pan H Front Comput Neurosci; 2021; 15():697469. PubMed ID: 34733147 [TBL] [Abstract][Full Text] [Related]
20. ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator. Pei Y; Xu C; Wu Z; Liu Y; Yang Y Front Neurosci; 2023; 17():1225871. PubMed ID: 37771337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]