These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35464315)

  • 21. Modulation of Functional Connectivity and Low-Frequency Fluctuations After Brain-Computer Interface-Guided Robot Hand Training in Chronic Stroke: A 6-Month Follow-Up Study.
    Lau CCY; Yuan K; Wong PCM; Chu WCW; Leung TW; Wong WW; Tong RKY
    Front Hum Neurosci; 2020; 14():611064. PubMed ID: 33551777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of iTBS on the Acute Neuroplastic Change After BCI Training.
    Ding Q; Lin T; Wu M; Yang W; Li W; Jing Y; Ren X; Gong Y; Xu G; Lan Y
    Front Cell Neurosci; 2021; 15():653487. PubMed ID: 33776653
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial.
    Zhao CG; Ju F; Sun W; Jiang S; Xi X; Wang H; Sun XL; Li M; Xie J; Zhang K; Xu GH; Zhang SC; Mou X; Yuan H
    Neurol Ther; 2022 Jun; 11(2):679-695. PubMed ID: 35174449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can robot-based measurements improve prediction of motor performance after robot-assisted upper-limb rehabilitation in patients with moderate-to-severe sub-acute stroke?
    Duret C; Pila O; Grosmaire AG; Koeppel T
    Restor Neurol Neurosci; 2019; 37(2):119-129. PubMed ID: 30909254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of cortical hemodynamic responses in digital therapeutics for upper limb rehabilitation in patients with stroke.
    Kim J; Kim E; Lee SH; Lee G; Kim YH
    J Neuroeng Rehabil; 2024 Jul; 21(1):115. PubMed ID: 38987817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial.
    Lin CH; Chou LW; Luo HJ; Tsai PY; Lieu FK; Chiang SL; Sung WH
    PLoS One; 2015; 10(7):e0131048. PubMed ID: 26193492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional-oriented, portable brain-computer interface training for hand motor recovery after stroke: a randomized controlled study.
    Fu J; Chen S; Shu X; Lin Y; Jiang Z; Wei D; Gao J; Jia J
    Front Neurosci; 2023; 17():1146146. PubMed ID: 37250399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: A randomized controlled trial.
    Wang A; Tian X; Jiang D; Yang C; Xu Q; Zhang Y; Zhao S; Zhang X; Jing J; Wei N; Wu Y; Lv W; Yang B; Zang D; Wang Y; Zhang Y; Wang Y; Meng X
    Med; 2024 Jun; 5(6):559-569.e4. PubMed ID: 38642555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robot-Assisted Bimanual Training Improves Hand Function in Patients With Subacute Stroke: A Randomized Controlled Pilot Study.
    Ma D; Li X; Xu Q; Yang F; Feng Y; Wang W; Huang JJ; Pei YC; Pan Y
    Front Neurol; 2022; 13():884261. PubMed ID: 35873779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Hebbian-Type Stimulation to Rescue Arm Function After Stroke: Study Protocol for a Randomized Clinical Trial.
    Xu R; Zhu GY; Zhu J; Wang Y; Xing XX; Chen LY; Li J; Shen FQ; Chen JB; Hua XY; Xu DS
    Front Neural Circuits; 2021; 15():789095. PubMed ID: 35221930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients' Neurorehabilitation: A Crossover Feasibility Study.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Rodriguez-Barragan MA; Hernandez-Arenas C; Quinzaños-Fresnedo J; Hernandez-Sanchez IR; Galicia-Alvarado MA; Miguel-Puga A; Arias-Carrion O
    Front Hum Neurosci; 2021; 15():656975. PubMed ID: 34163342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke.
    Várkuti B; Guan C; Pan Y; Phua KS; Ang KK; Kuah CW; Chua K; Ang BT; Birbaumer N; Sitaram R
    Neurorehabil Neural Repair; 2013 Jan; 27(1):53-62. PubMed ID: 22645108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial.
    Qian Q; Nam C; Guo Z; Huang Y; Hu X; Ng SC; Zheng Y; Poon W
    J Neuroeng Rehabil; 2019 Jun; 16(1):64. PubMed ID: 31159822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional electrical stimulation therapy controlled by a P300-based brain-computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study.
    Ramirez-Nava AG; Mercado-Gutierrez JA; Quinzaños-Fresnedo J; Toledo-Peral C; Vega-Martinez G; Gutierrez MI; Pacheco-Gallegos MDR; Hernández-Arenas C; Gutiérrez-Martínez J
    Front Neurol; 2023; 14():1221160. PubMed ID: 37669261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motor imagery therapy improved upper limb motor function in stroke patients with hemiplegia by increasing functional connectivity of sensorimotor and cognitive networks.
    Liu W; Cheng X; Rao J; Yu J; Lin Z; Wang Y; Wang L; Li D; Liu L; Gao R
    Front Hum Neurosci; 2024; 18():1295859. PubMed ID: 38439937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice.
    Conroy SS; Wittenberg GF; Krebs HI; Zhan M; Bever CT; Whitall J
    Neurorehabil Neural Repair; 2019 Sep; 33(9):751-761. PubMed ID: 31328671
    [No Abstract]   [Full Text] [Related]  

  • 38. Longitudinal Electroencephalography Analysis in Subacute Stroke Patients During Intervention of Brain-Computer Interface With Exoskeleton Feedback.
    Chen S; Cao L; Shu X; Wang H; Ding L; Wang SH; Jia J
    Front Neurosci; 2020; 14():809. PubMed ID: 32922254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review.
    Qu H; Zeng F; Tang Y; Shi B; Wang Z; Chen X; Wang J
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):30-41. PubMed ID: 35450498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.