These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35464416)

  • 1. Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC.
    Wang C; Ma J; Shao J; Zhang S; Li J; Yan J; Zhao Z; Bai C; Yu Y; Li W
    Front Immunol; 2022; 13():828560. PubMed ID: 35464416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images.
    Tian P; He B; Mu W; Liu K; Liu L; Zeng H; Liu Y; Jiang L; Zhou P; Huang Z; Dong D; Li W
    Theranostics; 2021; 11(5):2098-2107. PubMed ID: 33500713
    [No Abstract]   [Full Text] [Related]  

  • 3. Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images.
    Wang C; Ma J; Shao J; Zhang S; Liu Z; Yu Y; Li W
    Front Immunol; 2022; 13():813072. PubMed ID: 35250988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer.
    Xu T; Liu X; Chen Y; Wang S; Jiang C; Gong J
    BMC Med Imaging; 2024 Jul; 24(1):196. PubMed ID: 39085788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer.
    Meißner AK; Gutsche R; Galldiks N; Kocher M; Jünger ST; Eich ML; Nogova L; Araceli T; Schmidt NO; Ruge MI; Goldbrunner R; Proescholdt M; Grau S; Lohmann P
    J Neurooncol; 2023 Jul; 163(3):597-605. PubMed ID: 37382806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.
    Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y
    J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer.
    Wu J; Liu C; Liu X; Sun W; Li L; Gao N; Zhang Y; Yang X; Zhang J; Wang H; Liu X; Huang X; Zhang Y; Cheng R; Chi K; Mao L; Zhou L; Lin D; Ling S
    Mod Pathol; 2022 Mar; 35(3):403-411. PubMed ID: 34518630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated PD-L1 status prediction in lung cancer with multi-modal PET/CT fusion.
    Da-Ano R; Andrade-Miranda G; Tankyevych O; Visvikis D; Conze PH; Rest CCL
    Sci Rep; 2024 Jul; 14(1):16720. PubMed ID: 39030240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer.
    Hondelink LM; Hüyük M; Postmus PE; Smit VTHBM; Blom S; von der Thüsen JH; Cohen D
    Histopathology; 2022 Mar; 80(4):635-647. PubMed ID: 34786761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images.
    Mu W; Jiang L; Shi Y; Tunali I; Gray JE; Katsoulakis E; Tian J; Gillies RJ; Schabath MB
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34135101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep-learning model using enhanced chest CT images to predict PD-L1 expression in non-small-cell lung cancer patients.
    Liu PM; Feng B; Shi JF; Feng HJ; Hu ZJ; Chen YH; Zhang JP
    Clin Radiol; 2023 Oct; 78(10):e689-e697. PubMed ID: 37460338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Validation of Artificial Intelligence-Powered PD-L1 Tumor Proportion Score Interpretation for Immune Checkpoint Inhibitor Response Prediction in Non-Small Cell Lung Cancer.
    Kim H; Kim S; Choi S; Park C; Park S; Pereira S; Ma M; Yoo D; Paeng K; Jung W; Park S; Ock CY; Lee SH; Choi YL; Chung JH
    JCO Precis Oncol; 2024 May; 8():e2300556. PubMed ID: 38723233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning radiomics model based on PET/CT predicts PD-L1 expression in non-small cell lung cancer.
    Li B; Su J; Liu K; Hu C
    Eur J Radiol Open; 2024 Jun; 12():100549. PubMed ID: 38304572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer.
    Cheng G; Zhang F; Xing Y; Hu X; Zhang H; Chen S; Li M; Peng C; Ding G; Zhang D; Chen P; Xia Q; Wu M
    Front Immunol; 2022; 13():893198. PubMed ID: 35844508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of A Nomogram Prediction Model for PD-L1 Expression 
in Non-small Cell Lung Cancer Based on 18F-FDG PET/CT Metabolic Parameters].
    Hao L; Wang L; Zhang M; Yan J; Zhang F
    Zhongguo Fei Ai Za Zhi; 2023 Nov; 26(11):833-842. PubMed ID: 38061885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing deep learning and pathologist quantification of cell-level PD-L1 expression in non-small cell lung cancer whole-slide images.
    van Eekelen L; Spronck J; Looijen-Salamon M; Vos S; Munari E; Girolami I; Eccher A; Acs B; Boyaci C; de Souza GS; Demirel-Andishmand M; Meesters LD; Zegers D; van der Woude L; Theelen W; van den Heuvel M; Grünberg K; van Ginneken B; van der Laak J; Ciompi F
    Sci Rep; 2024 Mar; 14(1):7136. PubMed ID: 38531958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly Supervised Deep Learning Predicts Immunotherapy Response in Solid Tumors Based on PD-L1 Expression.
    Ligero M; Serna G; El Nahhas OSM; Sansano I; Mauchanski S; Viaplana C; Calderaro J; Toledo RA; Dienstmann R; Vanguri RS; Sauter JL; Sanchez-Vega F; Shah SP; Ramón Y Cajal S; Garralda E; Nuciforo P; Perez-Lopez R; Kather JN
    Cancer Res Commun; 2024 Jan; 4(1):92-102. PubMed ID: 38126740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "digital biopsy" in non-small cell lung cancer (NSCLC): a pilot study to predict the PD-L1 status from radiomics features of [18F]FDG PET/CT.
    Monaco L; De Bernardi E; Bono F; Cortinovis D; Crivellaro C; Elisei F; L'Imperio V; Landoni C; Mathoux G; Musarra M; Pagni F; Turolla EA; Messa C; Guerra L
    Eur J Nucl Med Mol Imaging; 2022 Aug; 49(10):3401-3411. PubMed ID: 35403860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Radiogenomics Biomarker for Predicting Treatment Response and Pneumotoxicity From Programmed Cell Death Protein or Ligand-1 Inhibition Immunotherapy in NSCLC.
    Chen M; Lu H; Copley SJ; Han Y; Logan A; Viola P; Cortellini A; Pinato DJ; Power D; Aboagye EO
    J Thorac Oncol; 2023 Jun; 18(6):718-730. PubMed ID: 36773776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning to estimate durable clinical benefit and prognosis from patients with non-small cell lung cancer treated with PD-1/PD-L1 blockade.
    Peng J; Zhang J; Zou D; Xiao L; Ma H; Zhang X; Li Y; Han L; Xie B
    Front Immunol; 2022; 13():960459. PubMed ID: 36420269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.