These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35464783)

  • 1. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health.
    Chaturvedi S; Khan S; Bhunia RK; Kaur K; Tiwari S
    Physiol Mol Biol Plants; 2022 Apr; 28(4):871-884. PubMed ID: 35464783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing vitamin C through agronomic biofortification of arugula microgreens.
    Kathi S; Laza H; Singh S; Thompson L; Li W; Simpson C
    Sci Rep; 2022 Jul; 12(1):13093. PubMed ID: 35908076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana.
    Chaturvedi S; Thakur N; Khan S; Sardar MK; Jangra A; Tiwari S
    Int J Biol Macromol; 2023 May; 237():124124. PubMed ID: 36966859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants.
    Celi GEA; Gratão PL; Lanza MGDB; Reis ARD
    Plant Physiol Biochem; 2023 Sep; 202():107970. PubMed ID: 37625254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security.
    Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance.
    Akram NA; Shafiq F; Ashraf M
    Front Plant Sci; 2017; 8():613. PubMed ID: 28491070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana.
    Bu Y; Sun B; Zhou A; Zhang X; Takano T; Liu S
    BMC Biotechnol; 2016 Oct; 16(1):69. PubMed ID: 27717369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
    Ren J; Chen Z; Duan W; Song X; Liu T; Wang J; Hou X; Li Y
    Plant Physiol Biochem; 2013 Dec; 73():229-36. PubMed ID: 24157701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbic acid: a metabolite switch for designing stress-smart crops.
    Mishra S; Sharma A; Srivastava AK
    Crit Rev Biotechnol; 2024 Jan; ():1-17. PubMed ID: 38163756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The perils of planning strategies to increase vitamin C content in plants: Beyond the hype.
    Terzaghi M; De Tullio MC
    Front Plant Sci; 2022; 13():1096549. PubMed ID: 36600921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities.
    Hancock RD; Viola R
    J Agric Food Chem; 2005 Jun; 53(13):5248-57. PubMed ID: 15969504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits.
    Suekawa M; Fujikawa Y; Inoue A; Kondo T; Uchida E; Koizumi T; Esaka M
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1713-1716. PubMed ID: 31023155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years.
    Quiñones CO; Gesto-Borroto R; Wilson RV; Hernández-Madrigal SV; Lorence A
    J Exp Bot; 2024 May; 75(9):2644-2663. PubMed ID: 38488689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of micronutrients in crop plants.
    Blancquaert D; De Steur H; Gellynck X; Van Der Straeten D
    Ann N Y Acad Sci; 2017 Feb; 1390(1):59-73. PubMed ID: 27801945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications.
    Zhang L; Wang Z; Xia Y; Kai G; Chen W; Tang K
    Crit Rev Biotechnol; 2007; 27(3):173-82. PubMed ID: 17849260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance.
    Zhang GY; Liu RR; Zhang CQ; Tang KX; Sun MF; Yan GH; Liu QQ
    PLoS One; 2015; 10(5):e0125870. PubMed ID: 25938231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Rice
    Broad RC; Bonneau JP; Beasley JT; Roden S; Sadowski P; Jewell N; Brien C; Berger B; Tako E; Glahn RP; Hellens RP; Johnson AAT
    Front Plant Sci; 2020; 11():595439. PubMed ID: 33343598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops.
    Mellidou I; Kanellis AK
    Front Chem; 2017; 5():50. PubMed ID: 28744455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated
    Cobos-Porras L; Rubia MI; Huertas R; Kum D; Dalton DA; Udvardi MK; Arrese-Igor C; Larrainzar E
    Front Plant Sci; 2021; 12():686075. PubMed ID: 34262586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?
    Bouis HE
    Proc Nutr Soc; 2003 May; 62(2):403-11. PubMed ID: 14506888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.