These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35464783)

  • 21. Beyond the antioxidant: the double life of vitamin C.
    De Tullio MC
    Subcell Biochem; 2012; 56():49-65. PubMed ID: 22116694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysine biofortification of crops to promote sustained human health in the 21st century.
    Yang Q; Zhao D; Zhang C; Sreenivasulu N; Sun SS; Liu Q
    J Exp Bot; 2022 Mar; 73(5):1258-1267. PubMed ID: 34723338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra).
    Badejo AA; Fujikawa Y; Esaka M
    J Plant Physiol; 2009 Apr; 166(6):652-60. PubMed ID: 18952318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa.
    Chen Z; Cao XL; Niu JP
    PLoS One; 2021; 16(4):e0250926. PubMed ID: 33914821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the response to abiotic stresses of high ascorbate Arabidopsis lines using phenomic approaches.
    Acosta-Gamboa LM; Suxing L; Jarrod W C; Zachary C C; Raquel T; Jessica P YC; Argelia L
    Plant Physiol Biochem; 2020 Jun; 151():500-515. PubMed ID: 32302943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance.
    Macknight RC; Laing WA; Bulley SM; Broad RC; Johnson AA; Hellens RP
    Curr Opin Biotechnol; 2017 Apr; 44():153-160. PubMed ID: 28231513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drought Stress Causes a Reduction in the Biosynthesis of Ascorbic Acid in Soybean Plants.
    Seminario A; Song L; Zulet A; Nguyen HT; González EM; Larrainzar E
    Front Plant Sci; 2017; 8():1042. PubMed ID: 28663755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development and release of maize fortified with provitamin A carotenoids in developing countries.
    Manjeru P; Van Biljon A; Labuschagne M
    Crit Rev Food Sci Nutr; 2019; 59(8):1284-1293. PubMed ID: 29200311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification.
    Locato V; Cimini S; Gara LD
    Front Plant Sci; 2013; 4():152. PubMed ID: 23734160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure.
    Geng A; Wang X; Wu L; Wang F; Wu Z; Yang H; Chen Y; Wen D; Liu X
    Ecotoxicol Environ Saf; 2018 Aug; 158():266-273. PubMed ID: 29715631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitamin C in Plants: From Functions to Biofortification.
    Paciolla C; Fortunato S; Dipierro N; Paradiso A; De Leonardis S; Mastropasqua L; de Pinto MC
    Antioxidants (Basel); 2019 Oct; 8(11):. PubMed ID: 31671820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the Prospects for Nanotechnology in Wheat Biofortification.
    Khan MK; Pandey A; Hamurcu M; Gezgin S; Athar T; Rajput VD; Gupta OP; Minkina T
    Biology (Basel); 2021 Nov; 10(11):. PubMed ID: 34827116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rationalising vitamin B
    Fudge J; Mangel N; Gruissem W; Vanderschuren H; Fitzpatrick TB
    Curr Opin Biotechnol; 2017 Apr; 44():130-137. PubMed ID: 28086191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of ascorbic acid synthesis in plants.
    Wang J; Zhang Z; Huang R
    Plant Signal Behav; 2013 Jun; 8(6):e24536. PubMed ID: 23603957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes.
    Aziz A; Akram NA; Ashraf M
    Plant Physiol Biochem; 2018 Feb; 123():192-203. PubMed ID: 29248677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-Ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes.
    Keates SE; Tarlyn NM; Loewus FA; Franceschi VR
    Phytochemistry; 2000 Feb; 53(4):433-40. PubMed ID: 10731019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.