These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35464828)

  • 1. Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19.
    Guglielmi N; Iacomini E; Viguerie A
    Math Methods Appl Sci; 2022 May; 45(8):4752-4771. PubMed ID: 35464828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study.
    Viguerie A; Veneziani A; Lorenzo G; Baroli D; Aretz-Nellesen N; Patton A; Yankeelov TE; Reali A; Hughes TJR; Auricchio F
    Comput Mech; 2020; 66(5):1131-1152. PubMed ID: 32836602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive mesh refinement and coarsening for diffusion-reaction epidemiological models.
    Grave M; Coutinho ALGA
    Comput Mech; 2021; 67(4):1177-1199. PubMed ID: 33649692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling epidemic flow with fluid dynamics.
    Cheng Z; Wang J
    Math Biosci Eng; 2022 Jun; 19(8):8334-8360. PubMed ID: 35801468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network.
    Grave M; Viguerie A; Barros GF; Reali A; Andrade RFS; Coutinho ALGA
    Comput Methods Appl Mech Eng; 2022 Nov; 401():115541. PubMed ID: 36124053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Spatio-temporal Spread of COVID-19 via Compartmental Models with Diffusion in Italy, USA, and Brazil.
    Grave M; Viguerie A; Barros GF; Reali A; Coutinho ALGA
    Arch Comput Methods Eng; 2021; 28(6):4205-4223. PubMed ID: 34335018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.
    Koch G; Krzyzanski W; Pérez-Ruixo JJ; Schropp J
    J Pharmacokinet Pharmacodyn; 2014 Aug; 41(4):291-318. PubMed ID: 25142056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic modeling with heterogeneity and social diffusion.
    Berestycki H; Desjardins B; Weitz JS; Oury JM
    J Math Biol; 2023 Mar; 86(4):60. PubMed ID: 36964799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Equations Models to Study Quorum Sensing.
    Pérez-Velázquez J; Hense BA
    Methods Mol Biol; 2018; 1673():253-271. PubMed ID: 29130179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deterministic Compartmental Modeling Framework for Disease Transmission.
    Villasin KJB; Rodriguez EM; Lao AR
    Methods Mol Biol; 2021; 2189():157-167. PubMed ID: 33180300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delay differential equations based models in NONMEM.
    Yan X; Bauer R; Koch G; Schropp J; Perez Ruixo JJ; Krzyzanski W
    J Pharmacokinet Pharmacodyn; 2021 Dec; 48(6):763-802. PubMed ID: 34302262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate.
    Babasola O; Kayode O; Peter OJ; Onwuegbuche FC; Oguntolu FA
    Inform Med Unlocked; 2022; 35():101124. PubMed ID: 36406926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate models with delay differential equations.
    Keane A; Krauskopf B; Postlethwaite CM
    Chaos; 2017 Nov; 27(11):114309. PubMed ID: 29195317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural identifiability analysis of age-structured PDE epidemic models.
    Renardy M; Kirschner D; Eisenberg M
    J Math Biol; 2022 Jan; 84(1-2):9. PubMed ID: 34982260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordinary differential equations with applications in molecular biology.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):347-52. PubMed ID: 23077920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical methods and hypoexponential approximations for gamma distributed delay differential equations.
    Cassidy T; Gillich P; Humphries AR; van Dorp CH
    IMA J Appl Math; 2022 Dec; 87(6):1043-1089. PubMed ID: 36691452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Pol model in two-delay differential equation representation.
    Elfouly MA; Sohaly MA
    Sci Rep; 2022 Feb; 12(1):2925. PubMed ID: 35190638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On a two-strain epidemic model involving delay equations.
    Meziane M; Moussaoui A; Volpert V
    Math Biosci Eng; 2023 Nov; 20(12):20683-20711. PubMed ID: 38124571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Numerical Comparison of Petri Net and Ordinary Differential Equation SIR Component Models.
    Reckell T; Sterner B; Jevtić P; Davidrajuh R
    ArXiv; 2024 Jul; ():. PubMed ID: 39070030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay differential equation-based models of cardiac tissue: Efficient implementation and effects on spiral-wave dynamics.
    Moreira Gomes J; Lobosco M; Weber Dos Santos R; Cherry EM
    Chaos; 2019 Dec; 29(12):123128. PubMed ID: 31893668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.