These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3546501)

  • 1. Corrosion and ion transfer from porous metallic alloys to tissues.
    Lemons JE; Lucas LC
    Instr Course Lect; 1986; 35():258-61. PubMed ID: 3546501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys.
    Lemons JE; Niemann KM; Weiss AB
    J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biodeterioration and corrosion of metallic implants and prostheses].
    López GD
    Medicina (B Aires); 1993; 53(3):260-74. PubMed ID: 8114635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the in vitro biocompatibility of Elgiloy, a co-based alloy, compared to two titanium alloys.
    Es-Souni M; Fischer-Brandies H; Es-Souni M
    J Orofac Orthop; 2003 Jan; 64(1):16-26. PubMed ID: 12557104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth.
    Pilliar RM
    Clin Orthop Relat Res; 1983 Jun; (176):42-51. PubMed ID: 6851341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion behaviour of Ti-15Mo alloy for dental implant applications.
    Kumar S; Narayanan TS
    J Dent; 2008 Jul; 36(7):500-7. PubMed ID: 18468762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion and cell culture evaluations of nickel-chromium dental casting alloys.
    Bumgardner JD; Lucas LC
    J Appl Biomater; 1994; 5(3):203-13. PubMed ID: 10147446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of biomaterials.
    Lemons JE; Lucas LC
    J Arthroplasty; 1986; 1(2):143-7. PubMed ID: 3559583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of x-ray photoelectron spectroscopy and cyclic polarization to evaluate the corrosion behavior of six nickel-chromium alloys before and after porcelain-fused-to-metal firing.
    Roach MD; Wolan JT; Parsell DE; Bumgardner JD
    J Prosthet Dent; 2000 Dec; 84(6):623-34. PubMed ID: 11125349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing.
    Lin HY; Bowers B; Wolan JT; Cai Z; Bumgardner JD
    Dent Mater; 2008 Mar; 24(3):378-85. PubMed ID: 17706759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical and electrochemical evaluation of the in vitro corrosion behavior of nickel-chrome and cobalt-chrome casting alloys for metal-ceramic restorations.
    Yfantis C; Yfantis D; Anastassopoulou J; Theophanides T
    Eur J Prosthodont Restor Dent; 2007 Mar; 15(1):33-40. PubMed ID: 17378457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements.
    Hallab NJ; Messina C; Skipor A; Jacobs JJ
    J Orthop Res; 2004 Mar; 22(2):250-9. PubMed ID: 15013082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo transport and excretion of corrosion products from accelerated anodic corrosion of porous coated F75 alloy.
    Brown SA; Zhang K; Merritt K; Payer JH
    J Biomed Mater Res; 1993 Aug; 27(8):1007-17. PubMed ID: 8408113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fretting corrosion accelerates crevice corrosion of modular hip tapers.
    Brown SA; Flemming CA; Kawalec JS; Placko HE; Vassaux C; Merritt K; Payer JH; Kraay MJ
    J Appl Biomater; 1995; 6(1):19-26. PubMed ID: 7703534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the biocompatibility of various dental alloys: Part I--Toxic potentials.
    Kansu G; Aydin AK
    Eur J Prosthodont Restor Dent; 1996 Sep; 4(3):129-36. PubMed ID: 9171019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the galvanic corrosion of multialloy total hip prostheses.
    Lucas LC; Buchanan RA; Lemons JE
    J Biomed Mater Res; 1981 Sep; 15(5):731-47. PubMed ID: 12659138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposal for the classification of dental alloys according to their resistance to corrosion.
    Manaranche C; Hornberger H
    Dent Mater; 2007 Nov; 23(11):1428-37. PubMed ID: 17466365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.