BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35465614)

  • 1. Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity.
    Altas B; Romanowski AJ; Bunce GW; Poulopoulos A
    Front Cell Neurosci; 2022; 16():853634. PubMed ID: 35465614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladin Is a Neuron-Specific Translational Target of mTOR Signaling That Regulates Axon Morphogenesis.
    Umegaki Y; Brotons AM; Nakanishi Y; Luo Z; Zhang H; Bonni A; Ikeuchi Y
    J Neurosci; 2018 May; 38(21):4985-4995. PubMed ID: 29712777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons.
    Hale CR; Sawicka K; Mora K; Fak JJ; Kang JJ; Cutrim P; Cialowicz K; Carroll TS; Darnell RB
    Elife; 2021 Dec; 10():. PubMed ID: 34939924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts.
    Kelliher MT; Yue Y; Ng A; Kamiyama D; Huang B; Verhey KJ; Wildonger J
    J Cell Biol; 2018 Jul; 217(7):2531-2547. PubMed ID: 29728423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local translation and directional steering in axons.
    Lin AC; Holt CE
    EMBO J; 2007 Aug; 26(16):3729-36. PubMed ID: 17660744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.
    Garza-Lombó C; Gonsebatt ME
    Front Cell Neurosci; 2016; 10():157. PubMed ID: 27378854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation.
    Fedder-Semmes KN; Appel B
    J Neurosci; 2021 Oct; 41(41):8532-8544. PubMed ID: 34475201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway.
    Morita T; Sobue K
    J Biol Chem; 2009 Oct; 284(40):27734-45. PubMed ID: 19648118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapamycin-Resistant mTOR Activity Is Required for Sensory Axon Regeneration Induced by a Conditioning Lesion.
    Chen W; Lu N; Ding Y; Wang Y; Chan LT; Wang X; Gao X; Jiang S; Liu K
    eNeuro; 2016; 3(6):. PubMed ID: 28101526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity.
    Harrison BJ; Venkat G; Lamb JL; Hutson TH; Drury C; Rau KK; Bunge MB; Mendell LM; Gage FH; Johnson RD; Hill CE; Rouchka EC; Moon LD; Petruska JC
    J Neurosci; 2016 Apr; 36(15):4259-75. PubMed ID: 27076424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mTOR Substrate S6 Kinase 1 (S6K1) Is a Negative Regulator of Axon Regeneration and a Potential Drug Target for Central Nervous System Injury.
    Al-Ali H; Ding Y; Slepak T; Wu W; Sun Y; Martinez Y; Xu XM; Lemmon VP; Bixby JL
    J Neurosci; 2017 Jul; 37(30):7079-7095. PubMed ID: 28626016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting mTOR signaling: a novel translatable treatment strategy for traumatic optic neuropathy?
    Morgan-Warren PJ; Berry M; Ahmed Z; Scott RA; Logan A
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6903-16. PubMed ID: 24154996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models.
    Wang J; Fourriere L; Gleeson PA
    Front Mol Neurosci; 2020; 13():597391. PubMed ID: 33324160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTEN/mTOR and axon regeneration.
    Park KK; Liu K; Hu Y; Kanter JL; He Z
    Exp Neurol; 2010 May; 223(1):45-50. PubMed ID: 20079353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntaxin13 expression is regulated by mammalian target of rapamycin (mTOR) in injured neurons to promote axon regeneration.
    Cho Y; Di Liberto V; Carlin D; Abe N; Li KH; Burlingame AL; Guan S; Michaelevski I; Cavalli V
    J Biol Chem; 2014 May; 289(22):15820-32. PubMed ID: 24737317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mTOR Complexes in Neurogenesis.
    LiCausi F; Hartman NW
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29789464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory.
    Giovannini MG; Lana D; Pepeu G
    Neurobiol Learn Mem; 2015 Mar; 119():18-33. PubMed ID: 25595880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD.
    Sosanya NM; Cacheaux LP; Workman ER; Niere F; Perrone-Bizzozero NI; Raab-Graham KF
    J Biol Chem; 2015 Jun; 290(26):16357-71. PubMed ID: 25944900
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.