These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35465710)

  • 1. Heat transport in Rayleigh-Bénard convection with linear marginality.
    Wen B; Ding Z; Chini GP; Kerswell RR
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210039. PubMed ID: 35465710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection.
    Wen B; Chini GP; Kerswell RR; Doering CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043012. PubMed ID: 26565337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical 1/3 scaling of convection holds up to Ra = 10
    Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model.
    Bissell JJ
    Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160649. PubMed ID: 27956886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.
    van der Poel EP; Ostilla-Mónico R; Verzicco R; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013017. PubMed ID: 25122379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convective heat transport in a rotating fluid layer of infinite Prandtl number: optimum fields and upper bounds on Nusselt number.
    Vitanov NK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026322. PubMed ID: 12636815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries.
    Whitehead JP; Doering CR
    Phys Rev Lett; 2011 Jun; 106(24):244501. PubMed ID: 21770573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near wall Prandtl number effects on velocity gradient invariants and flow topologies in turbulent Rayleigh-Bénard convection.
    Yigit S; Hasslberger J; Klein M; Chakraborty N
    Sci Rep; 2020 Sep; 10(1):14887. PubMed ID: 32913221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.
    Bissell JJ
    Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140845. PubMed ID: 25792960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection.
    Zhu X; Mathai V; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2018 Apr; 120(14):144502. PubMed ID: 29694143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat transport in low-Rossby-number Rayleigh-Bénard convection.
    Julien K; Knobloch E; Rubio AM; Vasil GM
    Phys Rev Lett; 2012 Dec; 109(25):254503. PubMed ID: 23368470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation layers in Rayleigh-Bénard convection: a unifying view.
    Petschel K; Stellmach S; Wilczek M; Lülff J; Hansen U
    Phys Rev Lett; 2013 Mar; 110(11):114502. PubMed ID: 25166543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.
    Li L; Shi N; du Puits R; Resagk C; Schumacher J; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026315. PubMed ID: 23005862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Onset of Soret-induced convection in a horizontal layer of ternary fluid with fixed vertical heat flux at the boundaries.
    Lyubimova TP; Sadilov ES; Prokopev SA
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):15. PubMed ID: 28188556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics.
    Stellmach S; Lischper M; Julien K; Vasil G; Cheng JS; Ribeiro A; King EM; Aurnou JM
    Phys Rev Lett; 2014 Dec; 113(25):254501. PubMed ID: 25554884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exponentially growing solutions in homogeneous Rayleigh-Bénard convection.
    Calzavarini E; Doering CR; Gibbon JD; Lohse D; Tanabe A; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):035301. PubMed ID: 16605590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection.
    Alards KMJ; Kunnen RPJ; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):126. PubMed ID: 31512076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production.
    Bartlett S; Bullock S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023014. PubMed ID: 25215827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection.
    Cheng JP; Zhang HN; Cai WH; Li SN; Li FC
    Phys Rev E; 2017 Jul; 96(1-1):013111. PubMed ID: 29347088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.