These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35465711)
1. Open-flow mixing and transfer operators. Klünker A; Padberg-Gehle K; Thiffeault JL Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210028. PubMed ID: 35465711 [TBL] [Abstract][Full Text] [Related]
3. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. Brunton SL; Brunton BW; Proctor JL; Kutz JN PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740 [TBL] [Abstract][Full Text] [Related]
4. Frobenius-perron resonances for maps with a mixed phase space. Weber J; Haake F; Seba P Phys Rev Lett; 2000 Oct; 85(17):3620-3. PubMed ID: 11030965 [TBL] [Abstract][Full Text] [Related]
5. Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems. Ma H; Ho DW; Lai YC; Lin W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042902. PubMed ID: 26565299 [TBL] [Abstract][Full Text] [Related]
6. Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets. Maiocchi CC; Lucarini V; Gritsun A Chaos; 2022 Mar; 32(3):033129. PubMed ID: 35364825 [TBL] [Abstract][Full Text] [Related]
7. Particle dynamics and mixing in the frequency driven "Kelvin cat eyes" flow. Tsega Y; Michaelides EE; Eschenazi EV Chaos; 2001 Jun; 11(2):351-358. PubMed ID: 12779469 [TBL] [Abstract][Full Text] [Related]
8. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems. Kobayashi MU; Saiki Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542 [TBL] [Abstract][Full Text] [Related]
9. Chaotic heteroclinic networks as models of switching behavior in biological systems. Morrison M; Young LS Chaos; 2022 Dec; 32(12):123102. PubMed ID: 36587320 [TBL] [Abstract][Full Text] [Related]
10. Koopman and Perron-Frobenius operators on reproducing kernel Banach spaces. Ikeda M; Ishikawa I; Schlosser C Chaos; 2022 Dec; 32(12):123143. PubMed ID: 36587322 [TBL] [Abstract][Full Text] [Related]
11. Chaotic mixing deep in the lung. Tsuda A; Rogers RA; Hydon PE; Butler JP Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10173-8. PubMed ID: 12119385 [TBL] [Abstract][Full Text] [Related]
12. Chaotic Manifold Analysis of Four-Screw Extruders Based on Lagrangian Coherent Structures. Zhu XZ; Tong Y; Hu YX Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441795 [TBL] [Abstract][Full Text] [Related]
13. Why chaotic mixing of particles is inevitable in the deep lung. Tsuda A; Laine-Pearson FE; Hydon PE J Theor Biol; 2011 Oct; 286(1):57-66. PubMed ID: 21801733 [TBL] [Abstract][Full Text] [Related]
14. Open or closed? Information flow decided by transfer operators and forecastability quality metric. Bollt EM Chaos; 2018 Jul; 28(7):075309. PubMed ID: 30070488 [TBL] [Abstract][Full Text] [Related]
15. Classical dynamics on graphs. Barra F; Gaspard P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066215. PubMed ID: 11415214 [TBL] [Abstract][Full Text] [Related]
16. Chaotic mixing and transport in a meandering jet flow. Prants SV; Budyansky MV; Uleysky MY; Zaslavsky GM Chaos; 2006 Sep; 16(3):033117. PubMed ID: 17014222 [TBL] [Abstract][Full Text] [Related]
17. Effect of dynamical traps on chaotic transport in a meandering jet flow. Uleysky MY; Budyansky MV; Prants SV Chaos; 2007 Dec; 17(4):043105. PubMed ID: 18163769 [TBL] [Abstract][Full Text] [Related]
18. Analysis of chaotic oscillations induced in two coupled Wilson-Cowan models. Maruyama Y; Kakimoto Y; Araki O Biol Cybern; 2014 Jun; 108(3):355-63. PubMed ID: 24789794 [TBL] [Abstract][Full Text] [Related]
19. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation. Isaeva OB; Kuznetsov SP; Mosekilde E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294 [TBL] [Abstract][Full Text] [Related]
20. A simple model of chaotic advection and scattering. Stolovitzky G; Kaper TJ; Sirovich L Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]