These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35465845)

  • 1. Pelvic elevation induces vertical kinetic energy without losing horizontal energy during running single-leg jump for distance.
    Sado N; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2023 Jul; 23(7):1146-1154. PubMed ID: 35465845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-extension movements inducing over half the mechanical energy directly contributing to jumping height in human running single-leg jump.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2020 Dec; 113():110082. PubMed ID: 33142206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved Approach in High Jump Induces Greater Jumping Height without Greater Joint Kinetic Exertions than Straight Approach.
    Sado N; Yoshioka S; Fukashiro S
    Med Sci Sports Exerc; 2022 Jan; 54(1):120-128. PubMed ID: 34347669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrepancy between 'contributing to' and 'sharing variance with' the effective energy for height in high jump.
    Sado N; Fujimori T; Tobe N
    J Sports Sci; 2024 Mar; 42(5):425-433. PubMed ID: 38545865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-leg side elevation of pelvis in single-leg jump is a substantial advantage over double-leg jump for jumping height generation.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2020 May; 104():109751. PubMed ID: 32216963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical power flow from trunk and lower limb joint power to external horizontal power in the track and field block start.
    Sado N; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2023 Sep; 23(9):1903-1912. PubMed ID: 35913105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle Contributions to Take-Off Velocity in the Long Jump.
    Yang K; Tang WT; Liu SH; Pandy MG
    Med Sci Sports Exerc; 2023 Aug; 55(8):1434-1444. PubMed ID: 36989530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in take-off leg kinetics between horizontal and vertical single-leg rebound jumps.
    Kariyama Y; Hobara H; Zushi K
    Sports Biomech; 2017 Jun; 16(2):187-200. PubMed ID: 27593193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic control of extreme jump angles in the red-legged running frog,
    Richards CT; Porro LB; Collings AJ
    J Exp Biol; 2017 May; 220(Pt 10):1894-1904. PubMed ID: 28275005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of mechanical energy directly contributing to sideward propulsion in sidestep cutting manoeuvre.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2021 Nov; 128():110799. PubMed ID: 34656010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: implications for risk of non-contact ACL injury.
    Ali N; Robertson DG; Rouhi G
    Knee; 2014 Jan; 21(1):38-46. PubMed ID: 23274067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landing instructions focused on pelvic and trunk lateral tilt decrease the knee abduction moment during a single-leg drop vertical jump.
    Chijimatsu M; Ishida T; Yamanaka M; Taniguchi S; Ueno R; Ikuta R; Samukawa M; Ino T; Kasahara S; Tohyama H
    Phys Ther Sport; 2020 Nov; 46():226-233. PubMed ID: 32992140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pelvic step: the contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill.
    Liang BW; Wu WH; Meijer OG; Lin JH; Lv GR; Lin XC; Prins MR; Hu H; van Dieën JH; Bruijn SM
    Gait Posture; 2014 Jan; 39(1):105-10. PubMed ID: 23830524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of treadmill running velocity on lower extremity coordination variability in healthy runners.
    Bailey JP; Freedman Silvernail J; Dufek JS; Navalta J; Mercer JA
    Hum Mov Sci; 2018 Oct; 61():144-150. PubMed ID: 30092396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in segment coordination variability and the impacts of the lower limb across running mileages in half marathons: Implications for running injuries.
    Chen TL; Wong DW; Wang Y; Tan Q; Lam WK; Zhang M
    J Sport Health Sci; 2022 Jan; 11(1):67-74. PubMed ID: 32992036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical strategy of triple jump: differences of inverted pendulum model between hop-dominated and balance techniques.
    Fujibayashi N; Otsuka M; Yoshioka S; Isaka T
    J Sports Med Phys Fitness; 2018 Dec; 58(12):1741-1751. PubMed ID: 29072033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate effects of the use of modified take-off boards on the take-off motion of the long jump during training.
    Koyama H; Muraki Y; Ae M
    Sports Biomech; 2006 Jul; 5(2):139-53. PubMed ID: 16939149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromechanical stabilisation of the centre of mass during running.
    Liew BXW; Rügamer D; Birn-Jeffery AV
    Gait Posture; 2024 Feb; 108():189-194. PubMed ID: 38103324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of take-off from prosthetic versus intact limb on transtibial amputee long jump technique.
    Nolan L; Patritti BL; Simpson KJ
    Prosthet Orthot Int; 2012 Sep; 36(3):297-305. PubMed ID: 22918906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.