These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35465921)

  • 1. Controlling and exploiting intrinsic unpaired electrons in metalloproteins.
    Richardson KH; Seif-Eddine M; Sills A; Roessler MM
    Methods Enzymol; 2022; 666():233-296. PubMed ID: 35465921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Paramagnetic Resonance Spectroscopy of Metalloproteins.
    Jasniewski A; Hu Y; Ribbe MW
    Methods Mol Biol; 2019; 1876():197-211. PubMed ID: 30317483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.
    Lyubenova S; Maly T; Zwicker K; Brandt U; Ludwig B; Prisner T
    Acc Chem Res; 2010 Feb; 43(2):181-9. PubMed ID: 19842617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy.
    Eisermann J; Seif-Eddine M; Roessler MM
    Curr Opin Chem Biol; 2021 Apr; 61():114-122. PubMed ID: 33422836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR spectroscopy: a powerful technique for the structural and functional investigation of metalloproteins.
    More C; Belle V; Asso M; Fournel A; Roger G; Guigliarelli B; Bertrand P
    Biospectroscopy; 1999; 5(5 Suppl):S3-18. PubMed ID: 10512534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.
    Cox N; Nalepa A; Pandelia ME; Lubitz W; Savitsky A
    Methods Enzymol; 2015; 563():211-49. PubMed ID: 26478487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of metalloproteins using continuous wave electron paramagnetic resonance (EPR).
    Gambarelli S; Maurel V
    Methods Mol Biol; 2014; 1122():139-51. PubMed ID: 24639258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins.
    Van Doorslaer S; Vinck E
    Phys Chem Chem Phys; 2007 Sep; 9(33):4620-38. PubMed ID: 17700864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.
    Khramtsov VV
    Antioxid Redox Signal; 2018 May; 28(15):1341-1344. PubMed ID: 29304554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers.
    Zimmermann R; Münck E; Brill WJ; Shah VK; Henzl MT; Rawlings J; Orme-Johnson WH
    Biochim Biophys Acta; 1978 Dec; 537(2):185-207. PubMed ID: 215215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Structure of Metalloproteins with RIDME.
    Astashkin AV
    Methods Enzymol; 2015; 563():251-84. PubMed ID: 26478488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules.
    Abdiaziz K; Salvadori E; Sokol KP; Reisner E; Roessler MM
    Chem Commun (Camb); 2019 Jul; 55(60):8840-8843. PubMed ID: 31168558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774).
    Tavares P; Ravi N; Moura JJ; LeGall J; Huang YH; Crouse BR; Johnson MK; Huynh BH; Moura I
    J Biol Chem; 1994 Apr; 269(14):10504-10. PubMed ID: 8144635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein.
    Pierik AJ; Wassink H; Haaker H; Hagen WR
    Eur J Biochem; 1993 Feb; 212(1):51-61. PubMed ID: 8383042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Electron Paramagnetic Resonance (EPR) Spectroscopy in the Study of Oxidative Stress in Biological Systems.
    Jackson SK
    Methods Mol Biol; 2019; 1990():93-102. PubMed ID: 31148065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroelectrochemistry: the best of two worlds.
    Kaim W; Fiedler J
    Chem Soc Rev; 2009 Dec; 38(12):3373-82. PubMed ID: 20449056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy.
    Cho FH; Stepanov V; Abeywardana C; Takahashi S
    Methods Enzymol; 2015; 563():95-118. PubMed ID: 26478483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.
    Petasis DT; Hendrich MP
    Methods Enzymol; 2015; 563():171-208. PubMed ID: 26478486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers.
    Teixeira M; Moura I; Xavier AV; Dervartanian DV; Legall J; Peck HD; Huynh BH; Moura JJ
    Eur J Biochem; 1983 Feb; 130(3):481-4. PubMed ID: 6297907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.