BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 35466062)

  • 1. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections.
    Ziogas A; Netea MG
    Trends Mol Med; 2022 Jun; 28(6):497-512. PubMed ID: 35466062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of vaccines on heterologous adaptive immunity.
    Messina NL; Zimmermann P; Curtis N
    Clin Microbiol Infect; 2019 Dec; 25(12):1484-1493. PubMed ID: 30797062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics.
    Chumakov K; Avidan MS; Benn CS; Bertozzi SM; Blatt L; Chang AY; Jamison DT; Khader SA; Kottilil S; Netea MG; Sparrow A; Gallo RC
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34006644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trained immunity: consequences for the heterologous effects of BCG vaccination.
    Kleinnijenhuis J; van Crevel R; Netea MG
    Trans R Soc Trop Med Hyg; 2015 Jan; 109(1):29-35. PubMed ID: 25573107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trained Immunity: Reprogramming Innate Immunity in Health and Disease.
    Bekkering S; Domínguez-Andrés J; Joosten LAB; Riksen NP; Netea MG
    Annu Rev Immunol; 2021 Apr; 39():667-693. PubMed ID: 33637018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory.
    Bindu S; Dandapat S; Manikandan R; Dinesh M; Subbaiyan A; Mani P; Dhawan M; Tiwari R; Bilal M; Emran TB; Mitra S; Rabaan AA; Mutair AA; Alawi ZA; Alhumaid S; Dhama K
    Hum Vaccin Immunother; 2022 Dec; 18(1):2040238. PubMed ID: 35240935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous vaccine interventions: boosting immunity against future pandemics.
    Marín-Hernández D; Nixon DF; Hupert N
    Mol Med; 2021 May; 27(1):54. PubMed ID: 34058986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous effects of vaccination and trained immunity.
    Gyssens IC; Netea MG
    Clin Microbiol Infect; 2019 Dec; 25(12):1457-1458. PubMed ID: 31158520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design.
    Covián C; Fernández-Fierro A; Retamal-Díaz A; Díaz FE; Vasquez AE; Lay MK; Riedel CA; González PA; Bueno SM; Kalergis AM
    Front Immunol; 2019; 10():2806. PubMed ID: 31849980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian rhythm influences induction of trained immunity by BCG vaccination.
    de Bree LCJ; Mourits VP; Koeken VA; Moorlag SJ; Janssen R; Folkman L; Barreca D; Krausgruber T; Fife-Gernedl V; Novakovic B; Arts RJ; Dijkstra H; Lemmers H; Bock C; Joosten LA; van Crevel R; Benn CS; Netea MG
    J Clin Invest; 2020 Oct; 130(10):5603-5617. PubMed ID: 32692732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trained immunity-inducing vaccines: Harnessing innate memory for vaccine design and delivery.
    Baydemir I; Dulfer EA; Netea MG; Domínguez-Andrés J
    Clin Immunol; 2024 Apr; 261():109930. PubMed ID: 38342415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BCG-induced protection: effects on innate immune memory.
    Netea MG; van Crevel R
    Semin Immunol; 2014 Dec; 26(6):512-7. PubMed ID: 25444548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations.
    Sánchez-Ramón S; Conejero L; Netea MG; Sancho D; Palomares Ó; Subiza JL
    Front Immunol; 2018; 9():2936. PubMed ID: 30619296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines.
    Blok BA; Arts RJ; van Crevel R; Benn CS; Netea MG
    J Leukoc Biol; 2015 Sep; 98(3):347-56. PubMed ID: 26150551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training innate immunity: the changing concept of immunological memory in innate host defence.
    Netea MG
    Eur J Clin Invest; 2013 Aug; 43(8):881-4. PubMed ID: 23869409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural and trained innate immunity against Mycobacterium tuberculosis.
    Ferluga J; Yasmin H; Al-Ahdal MN; Bhakta S; Kishore U
    Immunobiology; 2020 May; 225(3):151951. PubMed ID: 32423788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.
    Chua BY; Wong CY; Mifsud EJ; Edenborough KM; Sekiya T; Tan AC; Mercuri F; Rockman S; Chen W; Turner SJ; Doherty PC; Kelso A; Brown LE; Jackson DC
    mBio; 2015 Oct; 6(6):e01024-15. PubMed ID: 26507227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game.
    Palgen JL; Feraoun Y; Dzangué-Tchoupou G; Joly C; Martinon F; Le Grand R; Beignon AS
    Front Immunol; 2021; 12():612747. PubMed ID: 33763063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-specific effects of vaccines: Current evidence and potential implications.
    de Bree LCJ; Koeken VACM; Joosten LAB; Aaby P; Benn CS; van Crevel R; Netea MG
    Semin Immunol; 2018 Oct; 39():35-43. PubMed ID: 30007489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of vaccine non-specific effects on licensure of new vaccines.
    Munkwase G
    Vaccine; 2024 Feb; 42(5):1013-1021. PubMed ID: 38242737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.