These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35466718)

  • 1. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor.
    Lee I; Wakako T; Ikebukuro K; Sode K
    J Diabetes Sci Technol; 2022 Sep; 16(5):1107-1113. PubMed ID: 35466718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring.
    Inoue Y; Kusaka Y; Shinozaki K; Lee I; Sode K
    J Diabetes Sci Technol; 2022 Sep; 16(5):1101-1106. PubMed ID: 34986665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring.
    Lee I; Loew N; Tsugawa W; Ikebukuro K; Sode K
    Biosens Bioelectron; 2019 Jan; 124-125():216-223. PubMed ID: 30388564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.
    Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K
    Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase.
    Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K
    Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient potentiometry based d-serine sensor using engineered d-amino acid oxidase showing quasi-direct electron transfer property.
    Takamatsu S; Lee I; Lee J; Asano R; Tsugawa W; Ikebukuro K; Dick JE; Sode K
    Biosens Bioelectron; 2022 Mar; 200():113927. PubMed ID: 34995837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Direct Electron Transfer-Type Extended Gate Field Effect Transistor Enzymatic Sensors for Metabolite Detection.
    Probst D; Twiddy J; Hatada M; Pavlidis S; Daniele M; Sode K
    Anal Chem; 2024 Mar; 96(10):4076-4085. PubMed ID: 38408165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors.
    Ito K; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Asano R; Ikebukuro K; Sode K
    Biosens Bioelectron; 2021 Mar; 176():112911. PubMed ID: 33421758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
    Okuda-Shimazaki J; Yoshida H; Sode K
    Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
    Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K
    Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide.
    Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS
    Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor.
    Hiraka K; Tsugawa W; Asano R; Yokus MA; Ikebukuro K; Daniele MA; Sode K
    Biosens Bioelectron; 2021 Mar; 176():112933. PubMed ID: 33395570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the stability of Mucor-derived flavin adenine dinucleotide-dependent glucose dehydrogenase and glucose oxidase.
    Masakari Y; Hara C; Nakazawa H; Ichiyanagi A; Umetsu M
    J Biosci Bioeng; 2022 Oct; 134(4):307-310. PubMed ID: 35927131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase.
    Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T
    Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase.
    Okuda-Shimazaki J; Yoshida H; Lee I; Kojima K; Suzuki N; Tsugawa W; Yamada M; Inaka K; Tanaka H; Sode K
    Commun Biol; 2022 Dec; 5(1):1334. PubMed ID: 36473944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications.
    Sowa K; Okuda-Shimazaki J; Fukawa E; Sode K
    Annu Rev Biomed Eng; 2024 Jul; 26(1):357-382. PubMed ID: 38424090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.
    Hatada M; Loew N; Inose-Takahashi Y; Okuda-Shimazaki J; Tsugawa W; Mulchandani A; Sode K
    Bioelectrochemistry; 2018 Jun; 121():185-190. PubMed ID: 29471242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b
    Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K
    Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.