BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35467074)

  • 1. Overexpression of cytoplasmic C
    Kandoi D; Ruhil K; Govindjee G; Tripathy BC
    Plant Biotechnol J; 2022 Aug; 20(8):1518-1532. PubMed ID: 35467074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transgenic approach to understanding the influence of carbonic anhydrase on C18OO discrimination during C4 photosynthesis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 Oct; 142(2):662-72. PubMed ID: 16905667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis.
    Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2006 May; 141(1):232-42. PubMed ID: 16543411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.
    Kandoi D; Mohanty S; Govindjee ; Tripathy BC
    Photosynth Res; 2016 Dec; 130(1-3):47-72. PubMed ID: 26897549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Flaveria bidentis beta-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns.
    Tetu SG; Tanz SK; Vella N; Burnell JN; Ludwig M
    Plant Physiol; 2007 Jul; 144(3):1316-27. PubMed ID: 17496111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana.
    Kandoi D; Tripathy BC
    Photosynth Res; 2023 Oct; 158(1):57-76. PubMed ID: 37561272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective.
    Way DA; Katul GG; Manzoni S; Vico G
    J Exp Bot; 2014 Jul; 65(13):3683-93. PubMed ID: 24860185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis.
    Osborn HL; Alonso-Cantabrana H; Sharwood RE; Covshoff S; Evans JR; Furbank RT; von Caemmerer S
    J Exp Bot; 2017 Jan; 68(2):299-310. PubMed ID: 27702996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria.
    Tanz SK; Tetu SG; Vella NG; Ludwig M
    Plant Physiol; 2009 Jul; 150(3):1515-29. PubMed ID: 19448040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of Setaria italica phosphoenolpyruvate carboxylase gene in rice positively impacts photosynthesis and agronomic traits.
    Behera D; Swain A; Karmakar S; Dash M; Swain P; Baig MJ; Molla KA
    Plant Physiol Biochem; 2023 Jan; 194():169-181. PubMed ID: 36417836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner.
    Dąbrowska-Bronk J; Komar DN; Rusaczonek A; Kozłowska-Makulska A; Szechyńska-Hebda M; Karpiński S
    J Plant Physiol; 2016 Sep; 203():44-54. PubMed ID: 27316917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonic anhydrase and the molecular evolution of C4 photosynthesis.
    Ludwig M
    Plant Cell Environ; 2012 Jan; 35(1):22-37. PubMed ID: 21631531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO
    Kolbe AR; Studer AJ; Cornejo OE; Cousins AB
    BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of carbonic anhydrase in C4 plants.
    Ludwig M
    Curr Opin Plant Biol; 2016 Jun; 31():16-22. PubMed ID: 27016649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overproduction of PGR5 enhances the electron sink downstream of photosystem I in a C
    Tazoe Y; Ishikawa N; Shikanai T; Ishiyama K; Takagi D; Makino A; Sato F; Endo T
    Plant J; 2020 Jul; 103(2):814-823. PubMed ID: 32314445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Integration of Algal Carbon Concentration Mechanism Components into Tobacco Chloroplasts Increases Photosynthetic Efficiency and Biomass.
    Nölke G; Barsoum M; Houdelet M; Arcalís E; Kreuzaler F; Fischer R; Schillberg S
    Biotechnol J; 2019 Mar; 14(3):e1800170. PubMed ID: 29888874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular comparison of carbonic anhydrase from Flaveria species demonstrating different photosynthetic pathways.
    Ludwig M; Burnell JN
    Plant Mol Biol; 1995 Oct; 29(2):353-65. PubMed ID: 7579185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle.
    Pengelly JJ; Tan J; Furbank RT; von Caemmerer S
    Plant Physiol; 2012 Oct; 160(2):1070-80. PubMed ID: 22846191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular evolution of β-carbonic anhydrase in Flaveria.
    Ludwig M
    J Exp Bot; 2011 May; 62(9):3071-81. PubMed ID: 21406474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance.
    Crawford JD; Cousins AB
    J Exp Bot; 2022 Jan; 73(3):927-938. PubMed ID: 34698863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.