BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35467332)

  • 1. Writing and Erasing O-GlcNAc on Casein Kinase 2 Alpha Alters the Phosphoproteome.
    Schwein PA; Ge Y; Yang B; D'Souza A; Mody A; Shen D; Woo CM
    ACS Chem Biol; 2022 May; 17(5):1111-1121. PubMed ID: 35467332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis.
    Tarrant MK; Rho HS; Xie Z; Jiang YL; Gross C; Culhane JC; Yan G; Qian J; Ichikawa Y; Matsuoka T; Zachara N; Etzkorn FA; Hart GW; Jeong JS; Blackshaw S; Zhu H; Cole PA
    Nat Chem Biol; 2012 Jan; 8(3):262-9. PubMed ID: 22267120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells.
    Ramirez DH; Aonbangkhen C; Wu HY; Naftaly JA; Tang S; O'Meara TR; Woo CM
    ACS Chem Biol; 2020 Apr; 15(4):1059-1066. PubMed ID: 32119511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-GlcNAc Engineering on a Target Protein in Cells with Nanobody-OGT and Nanobody-splitOGA.
    Ramirez DH; Ge Y; Woo CM
    Curr Protoc; 2021 May; 1(5):e117. PubMed ID: 33950562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway.
    Zhong J; Martinez M; Sengupta S; Lee A; Wu X; Chaerkady R; Chatterjee A; O'Meally RN; Cole RN; Pandey A; Zachara NE
    Proteomics; 2015 Jan; 15(2-3):591-607. PubMed ID: 25263469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).
    Bullen JW; Balsbaugh JL; Chanda D; Shabanowitz J; Hunt DF; Neumann D; Hart GW
    J Biol Chem; 2014 Apr; 289(15):10592-10606. PubMed ID: 24563466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New ELISA-based method for the detection of O-GlcNAc transferase activity in vitro.
    Qi J; Wang R; Zeng Y; Yu W; Gu Y
    Prep Biochem Biotechnol; 2017 Aug; 47(7):699-702. PubMed ID: 28296566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets.
    Alfaro JF; Gong CX; Monroe ME; Aldrich JT; Clauss TR; Purvine SO; Wang Z; Camp DG; Shabanowitz J; Stanley P; Hart GW; Hunt DF; Yang F; Smith RD
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7280-5. PubMed ID: 22517741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of O-GlcNAc-6-phosphate modified proteins in large-scale phosphoproteomics data.
    Hahne H; Kuster B
    Mol Cell Proteomics; 2012 Oct; 11(10):1063-9. PubMed ID: 22826440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.
    Oh HJ; Moon HY; Cheon SA; Hahn Y; Kang HA
    J Microbiol; 2016 Oct; 54(10):667-74. PubMed ID: 27687229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.
    Slawson C; Lakshmanan T; Knapp S; Hart GW
    Mol Biol Cell; 2008 Oct; 19(10):4130-40. PubMed ID: 18653473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain.
    Liu Y; Li X; Yu Y; Shi J; Liang Z; Run X; Li Y; Dai CL; Grundke-Iqbal I; Iqbal K; Liu F; Gong CX
    PLoS One; 2012; 7(8):e43724. PubMed ID: 22928023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc modification affects the ATM-mediated DNA damage response.
    Miura Y; Sakurai Y; Endo T
    Biochim Biophys Acta; 2012 Oct; 1820(10):1678-85. PubMed ID: 22759405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics.
    Vosseller K; Wells L; Hart GW
    Biochimie; 2001 Jul; 83(7):575-81. PubMed ID: 11522385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.
    Ande SR; Moulik S; Mishra S
    PLoS One; 2009; 4(2):e4586. PubMed ID: 19238206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Beginner's Guide to
    Mannino MP; Hart GW
    Front Immunol; 2022; 13():828648. PubMed ID: 35173739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic model to study
    St Amand MM; Bond MR; Riedy J; Comly M; Shiloach J; Hanover JA
    J Biol Chem; 2018 Aug; 293(35):13673-13681. PubMed ID: 29954943
    [No Abstract]   [Full Text] [Related]  

  • 18. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates.
    Shen DL; Gloster TM; Yuzwa SA; Vocadlo DJ
    J Biol Chem; 2012 May; 287(19):15395-408. PubMed ID: 22311971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis.
    Wang Z; Udeshi ND; Slawson C; Compton PD; Sakabe K; Cheung WD; Shabanowitz J; Hunt DF; Hart GW
    Sci Signal; 2010 Jan; 3(104):ra2. PubMed ID: 20068230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical tools to explore nutrient-driven O-GlcNAc cycling.
    Kim EJ; Bond MR; Love DC; Hanover JA
    Crit Rev Biochem Mol Biol; 2014; 49(4):327-42. PubMed ID: 25039763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.