These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 35467484)

  • 21. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines.
    Houde M; Diallo AO
    BMC Genomics; 2008 Aug; 9():400. PubMed ID: 18752686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of the Aldehyde Dehydrogenase Gene
    Du HM; Liu C; Jin XW; Du CF; Yu Y; Luo S; He WZ; Zhang SZ
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and physiological strategies to increase aluminum resistance in plants.
    Inostroza-Blancheteau C; Rengel Z; Alberdi M; de la Luz Mora M; Aquea F; Arce-Johnson P; Reyes-Díaz M
    Mol Biol Rep; 2012 Mar; 39(3):2069-79. PubMed ID: 21660471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genetic control of tolerance to aluminum toxicity in the 'Essex' by 'Forrest' recombinant inbred line population.
    Sharma AD; Sharma H; Lightfoot DA
    Theor Appl Genet; 2011 Mar; 122(4):687-94. PubMed ID: 21060987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil.
    Wang X; Ai S; Liao H
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological responses and tolerance of plant shoot to aluminum toxicity.
    Chen LS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):143-55. PubMed ID: 16622312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype.
    Tyagi W; Yumnam JS; Sen D; Rai M
    Sci Rep; 2020 Mar; 10(1):4580. PubMed ID: 32165659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants.
    Wang ZQ; Xu XY; Gong QQ; Xie C; Fan W; Yang JL; Lin QS; Zheng SJ
    J Proteomics; 2014 Feb; 98():189-205. PubMed ID: 24412201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton.
    Kundu A; Das S; Basu S; Kobayashi Y; Kobayashi Y; Koyama H; Ganesan M
    Plant Biol (Stuttg); 2019 Jan; 21(1):35-44. PubMed ID: 30098101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between nitric oxide and plant hormones in aluminum tolerance.
    He H; He L; Gu M
    Plant Signal Behav; 2012 Apr; 7(4):469-71. PubMed ID: 22499184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil.
    de Sousa A; Saleh AM; Habeeb TH; Hassan YM; Zrieq R; Wadaan MAM; Hozzein WN; Selim S; Matos M; AbdElgawad H
    Sci Total Environ; 2019 Nov; 693():133636. PubMed ID: 31377375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.
    Cardoso TB; Pinto RT; Paiva LV
    PLoS One; 2019; 14(10):e0223217. PubMed ID: 31600239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Mechanisms for Coping with Al Toxicity in Plants.
    Zhang X; Long Y; Huang J; Xia J
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular regulation of aluminum resistance and sulfur nutrition during root growth.
    Alarcón-Poblete E; Inostroza-Blancheteau C; Alberdi M; Rengel Z; Reyes-Díaz M
    Planta; 2018 Jan; 247(1):27-39. PubMed ID: 29119269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.
    Liang C; Piñeros MA; Tian J; Yao Z; Sun L; Liu J; Shaff J; Coluccio A; Kochian LV; Liao H
    Plant Physiol; 2013 Mar; 161(3):1347-61. PubMed ID: 23341359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic Control of Plant Response to Heavy Metal Stress: A New View on Aluminum Tolerance.
    Gallo-Franco JJ; Sosa CC; Ghneim-Herrera T; Quimbaya M
    Front Plant Sci; 2020; 11():602625. PubMed ID: 33391313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell biology of aluminum toxicity and tolerance in higher plants.
    Matsumoto H
    Int Rev Cytol; 2000; 200():1-46. PubMed ID: 10965465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of aluminum sensing and signaling in plant aluminum resistance.
    Liu J; Piñeros MA; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):221-30. PubMed ID: 24417891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association and linkage analysis of aluminum tolerance genes in maize.
    Krill AM; Kirst M; Kochian LV; Buckler ES; Hoekenga OA
    PLoS One; 2010 Apr; 5(4):e9958. PubMed ID: 20376361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.