BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35467652)

  • 21. Electron transfer between the FMN and heme domains of cytochrome P450BM-3. Effects of substrate and CO.
    Hazzard JT; Govindaraj S; Poulos TL; Tollin G
    J Biol Chem; 1997 Mar; 272(12):7922-6. PubMed ID: 9065460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intraprotein electron transfer in a two-domain construct of neuronal nitric oxide synthase: the output state in nitric oxide formation.
    Feng C; Tollin G; Holliday MA; Thomas C; Salerno JC; Enemark JH; Ghosh DK
    Biochemistry; 2006 May; 45(20):6354-62. PubMed ID: 16700546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of free radicals from doxycycline hyclate and minocycline hydrochloride under blue light irradiation on the deactivation of Staphylococcus aureus, including a methicillin-resistant strain.
    Yuann JP; Lee SY; He S; Wong TW; Yang MJ; Cheng CW; Huang ST; Liang JY
    J Photochem Photobiol B; 2022 Jan; 226():112370. PubMed ID: 34864528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoactivities of Two Vitamin B Derivatives and Their Applications in the Perpetration of Photoinduced Antibacterial Nanofibrous Membranes.
    Zhang Z; Pan B; Wang L; Sun G
    ACS Appl Bio Mater; 2021 Dec; 4(12):8584-8596. PubMed ID: 35005945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of flavins in ocular tissues of the rabbit.
    Batey DW; Eckhert CD
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1981-5. PubMed ID: 2055692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular insights into the mechanism of substrate binding and catalysis of bifunctional FAD synthetase from Staphylococcus aureus.
    Lohithakshan A; Narayanasamy R; Potteth US; Keshava S; Nagaraja V; Usharani D; Kumar R
    Biochimie; 2021 Mar; 182():217-227. PubMed ID: 33516756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations.
    Andrikopoulos PC; Liu Y; Picchiotti A; Lenngren N; Kloz M; Chaudhari AS; Precek M; Rebarz M; Andreasson J; Hajdu J; Schneider B; Fuertes G
    Phys Chem Chem Phys; 2020 Mar; 22(12):6538-6552. PubMed ID: 31994556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization of flavin mononucleotide by capturing its "tail" with porous organic polymers for long-term photocatalytic degradation of micropollutants.
    Tang P; Ji B; Sun G
    J Hazard Mater; 2022 Aug; 435():128982. PubMed ID: 35472536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions.
    Tan SL; Kan JM; Webster RD
    J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites.
    Murray TA; Foster MP; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor.
    Kennis JT; Crosson S; Gauden M; van Stokkum IH; Moffat K; van Grondelle R
    Biochemistry; 2003 Apr; 42(12):3385-92. PubMed ID: 12653541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photophysical characterisation and photo-cycle dynamics of LOV1-His domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor.
    Tyagi A; Penzkofer A; Mathes T; Hegemann P
    J Photochem Photobiol B; 2010 Oct; 101(1):76-88. PubMed ID: 20655238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin.
    Salomon M; Christie JM; Knieb E; Lempert U; Briggs WR
    Biochemistry; 2000 Aug; 39(31):9401-10. PubMed ID: 10924135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray crystal structure of the Desulfovibrio vulgaris (Hildenborough) apoflavodoxin-riboflavin complex.
    Walsh MA; McCarthy A; O'Farrell PA; McArdle P; Cunningham PD; Mayhew SG; Higgins TM
    Eur J Biochem; 1998 Dec; 258(2):362-71. PubMed ID: 9874201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy.
    Macheroux P; Petersen J; Bornemann S; Lowe DJ; Thorneley RN
    Biochemistry; 1996 Feb; 35(5):1643-52. PubMed ID: 8634296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron-transfer reactions of photoreduced flavin analogues with c-type cytochromes: quantitation of steric and electrostatic factors.
    Meyer TE; Watkins JA; Przysiecki CT; Tollin G; Cusanovich MA
    Biochemistry; 1984 Sep; 23(20):4761-7. PubMed ID: 6093864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the photooxidation of the multifunctional drug niclosamide. A kinetic study in the presence of vitamin B2 and visible light.
    Natera J; Gatica E; Challier C; Possetto D; Massad W; Miskoski S; Pajares A; García NA
    Redox Rep; 2015; 20(6):259-66. PubMed ID: 25897629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photodissociative decay pathways of the flavin mononucleotide anion and its complexes with tryptophan and glutamic acid.
    Uleanya KO; Anstöter CS; Dessent CEH
    Phys Chem Chem Phys; 2023 Nov; 25(44):30697-30707. PubMed ID: 37934009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
    Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic interaction between wavelength of light and concentration of H₂O₂ in bactericidal activity of photolysis of H₂O₂.
    Toki T; Nakamura K; Kurauchi M; Kanno T; Katsuda Y; Ikai H; Hayashi E; Egusa H; Sasaki K; Niwano Y
    J Biosci Bioeng; 2015 Mar; 119(3):358-62. PubMed ID: 25282638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.