These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35467834)

  • 1. Scalable Strategy to Directly Prepare 2D and 3D Liquid Metal Circuits Based on Laser-Induced Selective Metallization.
    Xiao C; Feng J; Xu H; Xu R; Zhou T
    ACS Appl Mater Interfaces; 2022 May; 14(17):20000-20013. PubMed ID: 35467834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Metallization Induced by Laser Activation: Fabricating Metallized Patterns on Polymer via Metal Oxide Composite.
    Zhang J; Zhou T; Wen L
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8996-9005. PubMed ID: 28218517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating Metallic Circuit Patterns on Polymer Substrates through Laser and Selective Metallization.
    Zhang J; Zhou T; Wen L; Zhang A
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33999-34007. PubMed ID: 27960435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maskless Fabrication of Highly Conductive and Ultrastretchable Liquid Metal Features through Selective Laser Activation.
    Hu G; Zhu H; Guo H; Wang S; Sun Y; Zhang J; Lin Y; Kong D
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28675-28683. PubMed ID: 37270696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalytic Laser Activator for Both UV and NIR Lasers: Preparation of Circuits on Polymer Substrates by Selective Metallization.
    Xu H; Feng J; Xiao C; Xu R; Xie Y; Zhou T
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31411-31423. PubMed ID: 35764609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-Induced Selective Metallization on Polymer Substrates Using Organocopper for Portable Electronics.
    Zhang J; Feng J; Jia L; Zhang H; Zhang G; Sun S; Zhou T
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13714-13723. PubMed ID: 30888140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.
    Hu M; Guo Q; Zhang T; Zhou S; Yang J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4280-6. PubMed ID: 26844943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on laser-assisted selective metallization of a 3D printed ceramic surface.
    Zhao F; Jiao C; Xie D; Lu B; Qiu M; Yi X; Liu J; Wang C; Shen L; Tian Z
    RSC Adv; 2020 Dec; 10(72):44015-44024. PubMed ID: 35517163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effective surface modification for Galinstan® lyophobicity.
    Kadlaskar SS; Yoo JH; Abhijeet ; Lee JB; Choi W
    J Colloid Interface Sci; 2017 Apr; 492():33-40. PubMed ID: 28068542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Transfer-Enabled Rapid Printing of Liquid Metal Circuits on Multiple Substrates.
    Guo R; Li T; Wu Z; Wan C; Niu J; Huo W; Yu H; Huang X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37028-37038. PubMed ID: 35938409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallophobic Coatings to Enable Shape Reconfigurable Liquid Metal Inside 3D Printed Plastics.
    Ma J; Bharambe VT; Persson KA; Bachmann AL; Joshipura ID; Kim J; Oh KH; Patrick JF; Adams JJ; Dickey MD
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12709-12718. PubMed ID: 33236879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile and scalable patterning approach for ultrastretchable liquid metal features.
    Hu G; Wang S; Yu J; Zhang J; Sun Y; Kong D
    Lab Chip; 2022 Dec; 22(24):4933-4940. PubMed ID: 36408775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust metallic micropatterns fabricated on quartz glass surfaces by femtosecond laser-induced selective metallization.
    Huang Y; Xie X; Cui J; Zhou W; Chen J; Long J
    Opt Express; 2022 May; 30(11):19544-19556. PubMed ID: 36221728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and Stretchable Liquid Metal Electrodes Working at Sub-Zero Temperature and Their Applications.
    Xiao P; Kim JH; Seo S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced metal reduction from liquid electrolyte precursor.
    Kim D; Choi C
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7581-5. PubMed ID: 24245296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics.
    Zhao R; Guo R; Xu X; Liu J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36723-36730. PubMed ID: 32660242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost-effective fabrication of a high-conductivity copper electrode for heterojunction solar cells via laser-induced selective metallization.
    Li Z; Xie X; Luo Y; Huang Y; Yang J; Qing H; Zhou T
    Opt Express; 2024 Mar; 32(7):12941-12949. PubMed ID: 38571101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallization of branched DNA origami for nanoelectronic circuit fabrication.
    Liu J; Geng Y; Pound E; Gyawali S; Ashton JR; Hickey J; Woolley AT; Harb JN
    ACS Nano; 2011 Mar; 5(3):2240-7. PubMed ID: 21323323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.
    Park CW; Moon YG; Seong H; Jung SW; Oh JY; Na BS; Park NM; Lee SS; Im SG; Koo JB
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15459-65. PubMed ID: 27250997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.