These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35467870)

  • 1. DFT Study on the Biosynthesis of Asperterpenol and Preasperterpenoid Sesterterpenoids: Exclusion of Secondary Carbocation Intermediates and Origin of Structural Diversification.
    Sakamoto K; Sato H; Uchiyama M
    J Org Chem; 2022 May; 87(9):6432-6437. PubMed ID: 35467870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT Study on the Biosynthesis of Preasperterpenoid A: Role of Secondary Carbocations in the Carbocation Cascade.
    Sato H; Yamazaki M; Uchiyama M
    Chem Pharm Bull (Tokyo); 2020; 68(5):487-490. PubMed ID: 32378547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT Study on the Biosynthesis of Verrucosane Diterpenoids and Mangicol Sesterterpenoids: Involvement of Secondary-Carbocation-Free Reaction Cascades.
    Sato H; Li BX; Takagi T; Wang C; Miyamoto K; Uchiyama M
    JACS Au; 2021 Aug; 1(8):1231-1239. PubMed ID: 34467361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement.
    Sato H; Hashishin T; Kanazawa J; Miyamoto K; Uchiyama M
    J Am Chem Soc; 2020 Nov; 142(47):19830-19834. PubMed ID: 33124823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Study on the Mechanism of Spirocyclization in Spiroviolene Biosynthesis.
    Sato H; Takagi T; Miyamoto K; Uchiyama M
    Chem Pharm Bull (Tokyo); 2021; 69(10):1034-1038. PubMed ID: 34602572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type.
    Sato H; Mitsuhashi T; Yamazaki M; Abe I; Uchiyama M
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14752-14757. PubMed ID: 30187610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthetic Gene Cluster for Asperterpenols A and B and the Cyclization Mechanism of Asperterpenol A Synthase.
    Quan Z; Dickschat JS
    Org Lett; 2020 Oct; 22(19):7552-7555. PubMed ID: 32910664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242.
    Xiao Z; Huang H; Shao C; Xia X; Ma L; Huang X; Lu Y; Lin Y; Long Y; She Z
    Org Lett; 2013 May; 15(10):2522-5. PubMed ID: 23642191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sesterterpenoids: chemistry, biology, and biosynthesis.
    Li K; Gustafson KR
    Nat Prod Rep; 2021 Jul; 38(7):1251-1281. PubMed ID: 33350420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concertedness and Activation Energy Control by Distal Methyl Group during Ring Contraction/Expansion in Scalarane-Type Sesterterpenoid Biosynthesis.
    Sato H; Nakano M
    Chemistry; 2023 Feb; 29(11):e202203076. PubMed ID: 36411271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inherent atomic mobility changes in carbocation intermediates during the sesterterpene cyclization cascade.
    Sato H; Mitsuhashi T; Yamazaki M; Abe I; Uchiyama M
    Beilstein J Org Chem; 2019; 15():1890-1897. PubMed ID: 31467610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A.
    Huang JH; Lv JM; Wang QZ; Zou J; Lu YJ; Wang QL; Chen DN; Yao XS; Gao H; Hu D
    Org Biomol Chem; 2019 Jan; 17(2):248-251. PubMed ID: 30548032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Macrocycle Conformation on the Taxadiene-Forming Carbocation Cascade: Insight Gained from Sobralene, a Recently Discovered Verticillene Isomer.
    Hayes CJ; Palframan MJ; Pattenden G
    J Org Chem; 2020 Mar; 85(6):4507-4514. PubMed ID: 32101002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase.
    Rajamani R; Gao J
    J Am Chem Soc; 2003 Oct; 125(42):12768-81. PubMed ID: 14558824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caryolene-forming carbocation rearrangements.
    Nguyen QN; Tantillo DJ
    Beilstein J Org Chem; 2013; 9():323-31. PubMed ID: 23503674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The carbon-skeleton rearrangement in tropane alkaloid biosynthesis.
    Sandala GM; Smith DM; Radom L
    J Am Chem Soc; 2008 Aug; 130(32):10684-90. PubMed ID: 18627156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premnafulvol A: A Diterpenoid with a 6/5/7/3-Fused Tetracyclic Core and Its Biosynthetically Related Analogues from Premna fulva.
    Pu DB; Du BW; Chen W; Gao JB; Hu K; Shi N; Li YM; Zhang XJ; Zhang RH; Li XN; Zhang HB; Wang F; Xiao WL
    Org Lett; 2018 Oct; 20(19):6314-6317. PubMed ID: 30256123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and DFT.
    Makino Y; Kawamura I; Okitsu T; Wada A; Kamo N; Sudo Y; Ueda K; Naito A
    Biophys J; 2018 Jul; 115(1):72-83. PubMed ID: 29972813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Montecrinanes A-C: Triterpenes with an Unprecedented Rearranged Tetracyclic Skeleton from Celastrus vulcanicola. Insights into Triterpenoid Biosynthesis Based on DFT Calculations.
    Purino M; Ardiles AE; Callies O; Jiménez IA; Bazzocchi IL
    Chemistry; 2016 May; 22(22):7582-91. PubMed ID: 27106132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ganorbifates A and B from
    Yin X; Tuong TML; Tian JM; Pescitelli G; Gao JM
    Chem Commun (Camb); 2020 Sep; 56(70):10195-10198. PubMed ID: 32748900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.