BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35467989)

  • 1. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
    Babu KS; Amamcharla JK
    Crit Rev Food Sci Nutr; 2023; 63(28):9262-9281. PubMed ID: 35467989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control.
    Yaparatne S; Morón-López J; Bouchard D; Garcia-Segura S; Apul OG
    Sci Total Environ; 2024 Jun; 931():172687. PubMed ID: 38663593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis.
    Gao Z; Wu W; Sun W; Wang B
    Langmuir; 2021 Sep; 37(38):11281-11291. PubMed ID: 34520212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
    Jin J; Feng Z; Yang F; Gu N
    Langmuir; 2019 Mar; 35(12):4238-4245. PubMed ID: 30817886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference.
    Jia M; Farid MU; Kharraz JA; Kumar NM; Chopra SS; Jang A; Chew J; Khanal SK; Chen G; An AK
    Water Res; 2023 Oct; 245():120613. PubMed ID: 37738940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Massive generation of metastable bulk nanobubbles in water by external electric fields.
    Ghaani MR; Kusalik PG; English NJ
    Sci Adv; 2020 Apr; 6(14):eaaz0094. PubMed ID: 32284977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing nanobubble technology for carbon-neutral water treatment and enhanced environmental sustainability.
    Singh E; Kumar A; Lo SL
    Environ Res; 2024 Jul; 252(Pt 3):118980. PubMed ID: 38657850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents.
    Prakash R; Lee J; Moon Y; Pradhan D; Kim SH; Lee HY; Lee J
    Langmuir; 2023 Feb; 39(5):1968-1986. PubMed ID: 36692411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review.
    Zhou S; Liu M; Chen B; Sun L; Lu H
    Bioresour Technol; 2022 Oct; 362():127826. PubMed ID: 36029987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.
    Ahmed AKA; Sun C; Hua L; Zhang Z; Zhang Y; Zhang W; Marhaba T
    Chemosphere; 2018 Jul; 203():327-335. PubMed ID: 29626810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
    Shi X; Xue S; Marhaba T; Zhang W
    Langmuir; 2021 Feb; 37(7):2514-2522. PubMed ID: 33538170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth.
    Ahmed AKA; Shi X; Hua L; Manzueta L; Qing W; Marhaba T; Zhang W
    J Agric Food Chem; 2018 May; 66(20):5117-5124. PubMed ID: 29722967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrapment of interfacial nanobubbles on nano-structured surfaces.
    Wang Y; Li X; Ren S; Tedros Alem H; Yang L; Lohse D
    Soft Matter; 2017 Aug; 13(32):5381-5388. PubMed ID: 28744543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electrolytes and surfactants on generation and longevity of carbon dioxide nanobubbles.
    Phan K; Truong T; Wang Y; Bhandari B
    Food Chem; 2021 Nov; 363():130299. PubMed ID: 34147892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination.
    Liu S; Oshita S; Kawabata S; Makino Y; Yoshimoto T
    Langmuir; 2016 Nov; 32(43):11295-11302. PubMed ID: 27259095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.