These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 35468085)
1. Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non-Small Cell Lung Cancer With Electronic Medical Records: Development and Validation Study. Hu D; Li S; Zhang H; Wu N; Lu X JMIR Med Inform; 2022 Apr; 10(4):e35475. PubMed ID: 35468085 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma. Feng X; Hong T; Liu W; Xu C; Li W; Yang B; Song Y; Li T; Li W; Zhou H; Yin C Front Endocrinol (Lausanne); 2022; 13():1054358. PubMed ID: 36465636 [TBL] [Abstract][Full Text] [Related]
3. Predicting lymph node metastasis in colorectal cancer: An analysis of influencing factors to develop a risk model. Lei YP; Song QZ; Liu S; Xie JY; Lv GQ World J Gastrointest Surg; 2023 Oct; 15(10):2234-2246. PubMed ID: 37969707 [TBL] [Abstract][Full Text] [Related]
4. Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma. Xie H; Hong T; Liu W; Jia X; Wang L; Zhang H; Xu C; Zhang X; Li WL; Wang Q; Yin C; Lv X BMC Gastroenterol; 2024 Apr; 24(1):137. PubMed ID: 38641789 [TBL] [Abstract][Full Text] [Related]
5. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer. Cong M; Feng H; Ren JL; Xu Q; Cong L; Hou Z; Wang YY; Shi G Lung Cancer; 2020 Jan; 139():73-79. PubMed ID: 31743889 [TBL] [Abstract][Full Text] [Related]
6. CT radiomics features to predict lymph node metastasis in advanced esophageal squamous cell carcinoma and to discriminate between regional and non-regional lymph node metastasis: a case control study. Ou J; Wu L; Li R; Wu CQ; Liu J; Chen TW; Zhang XM; Tang S; Wu YP; Yang LQ; Tan BG; Lu FL Quant Imaging Med Surg; 2021 Feb; 11(2):628-640. PubMed ID: 33532263 [TBL] [Abstract][Full Text] [Related]
7. Preoperative Prediction of Lymph Node Metastasis in Patients With Early-T-Stage Non-small Cell Lung Cancer by Machine Learning Algorithms. Wu Y; Liu J; Han C; Liu X; Chong Y; Wang Z; Gong L; Zhang J; Gao X; Guo C; Liang N; Li S Front Oncol; 2020; 10():743. PubMed ID: 32477952 [No Abstract] [Full Text] [Related]
8. A Multi-modal Heterogeneous Graph Forest to Predict Lymph Node Metastasis of Non-small Cell Lung Cancer. Hu D; Li S; Wu N; Lu X IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37018304 [TBL] [Abstract][Full Text] [Related]
9. Clinicopathological models for predicting lymph node metastasis in patients with early-stage lung adenocarcinoma: the application of machine learning algorithms. Chong Y; Wu Y; Liu J; Han C; Gong L; Liu X; Liang N; Li S J Thorac Dis; 2021 Jul; 13(7):4033-4042. PubMed ID: 34422333 [TBL] [Abstract][Full Text] [Related]
10. A Comprehensive Nomogram Combining CT Imaging with Clinical Features for Prediction of Lymph Node Metastasis in Stage I-IIIB Non-small Cell Lung Cancer. Zheng X; Shao J; Zhou L; Wang L; Ge Y; Wang G; Feng F Ther Innov Regul Sci; 2022 Jan; 56(1):155-167. PubMed ID: 34699046 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning for the Prediction of Lymph Nodes Micrometastasis in Patients with Non-Small Cell Lung Cancer: A Comparative Analysis of Two Practical Prediction Models for Gross Target Volume Delineation. Hu S; Luo M; Li Y Cancer Manag Res; 2021; 13():4811-4820. PubMed ID: 34168500 [TBL] [Abstract][Full Text] [Related]
12. Construction of prediction model of lymph node metastasis of early cervical cancer based on machine learning algorithm and its application: experience of 204 cases in a single center. Meng Y; Yan X; Fan J Am J Transl Res; 2023; 15(3):1852-1861. PubMed ID: 37056833 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of a venous computed tomography radiomics model to predict lymph node metastasis from non-small cell lung cancer. Cong M; Yao H; Liu H; Huang L; Shi G Medicine (Baltimore); 2020 May; 99(18):e20074. PubMed ID: 32358390 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
15. Development and Validation of a Combined Model for Preoperative Prediction of Lymph Node Metastasis in Peripheral Lung Adenocarcinoma. Li Q; He XQ; Fan X; Zhu CN; Lv JW; Luo TY Front Oncol; 2021; 11():675877. PubMed ID: 34109124 [TBL] [Abstract][Full Text] [Related]
16. Support vector machine model for diagnosis of lymph node metastasis in gastric cancer with multidetector computed tomography: a preliminary study. Zhang XP; Wang ZL; Tang L; Sun YS; Cao K; Gao Y BMC Cancer; 2011 Jan; 11():10. PubMed ID: 21223564 [TBL] [Abstract][Full Text] [Related]
17. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W J Oncol; 2022; 2022():6356399. PubMed ID: 36411795 [TBL] [Abstract][Full Text] [Related]
18. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based gray-level co-occurrence matrix signature for predicting lymph node metastasis in undifferentiated-type early gastric cancer. Wei X; Yan XJ; Guo YY; Zhang J; Wang GR; Fayyaz A; Yu J World J Gastroenterol; 2022 Sep; 28(36):5338-5350. PubMed ID: 36185632 [TBL] [Abstract][Full Text] [Related]
20. Preoperative computed tomography semantic features in predicting lymph node metastasis of part-solid nodules in non-small cell lung cancer: a multicenter retrospective study. Xie Z; Yang Y; Niu Z; Mao G; Zhu X; Xu Z; Yang D; Wang H; Wang J Quant Imaging Med Surg; 2024 Jul; 14(7):5151-5163. PubMed ID: 39022285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]