These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35468165)

  • 1. Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations.
    Feo A; Celico F
    PLoS One; 2022; 17(4):e0266486. PubMed ID: 35468165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone.
    Feo A; Celico F
    Sci Rep; 2021 Mar; 11(1):5212. PubMed ID: 33664276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into contaminant transport dynamics in the saturated porous system in the presence of low permeability region using numerical simulations and temporal moment analysis.
    Guleria A; Chakma S
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):89071-89087. PubMed ID: 37452242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of water table fluctuation on LNAPL deposit in highly permeable porous media: A coupled numerical and experimental study.
    Koohbor B; Colombano S; Harrouet T; Deparis J; Lion F; Davarzani D; Ataie-Ashtiani B
    J Contam Hydrol; 2023 May; 256():104183. PubMed ID: 37116372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk.
    Brouyère S
    J Contam Hydrol; 2006 Jan; 82(3-4):195-219. PubMed ID: 16303208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating contaminant transport in unsaturated and saturated groundwater zones.
    Sarma R; Singh SK
    Water Environ Res; 2021 Sep; 93(9):1496-1509. PubMed ID: 33714215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media.
    Zhao C; Hobbs BE; Ord A
    J Contam Hydrol; 2012 Sep; 138-139():123-40. PubMed ID: 22892525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonideal transport of reactive contaminants in heterogeneous porous media: 7. distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption.
    Zhang Z; Brusseau ML
    J Contam Hydrol; 2004 Oct; 74(1-4):83-103. PubMed ID: 15358488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA; Burgess WG; Barker JA; Jefferies NL
    J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore scale modelling of DNAPL migration in a water-saturated porous medium.
    Nsir K; Schäfer G; di Chiara Roupert R; Mercury L
    J Contam Hydrol; 2018 Aug; 215():39-50. PubMed ID: 30060891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mass Transfer Index (MTI): A semi-empirical approach for quantifying transport of solutes in variably saturated porous media.
    Stults J; Illangasekare T; Higgins CP
    J Contam Hydrol; 2021 Oct; 242():103842. PubMed ID: 34118564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.
    Hibi Y; Tomigashi A; Hirose M
    J Contam Hydrol; 2015 Dec; 183():121-34. PubMed ID: 26583741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation for strip-island freshwater lenses involving a precipitation-fed freshwater table.
    Sun D; Wang M; Feng P
    J Contam Hydrol; 2023 Nov; 259():104242. PubMed ID: 37742468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of immiscible NAPL contaminant sources in aquifers by a modified two-level saturation based imperialist competitive algorithm.
    Ghafouri HR; Mosharaf-Dehkordi M; Afzalan B
    J Contam Hydrol; 2017 Jul; 202():33-46. PubMed ID: 28545848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem.
    Nick HM; Raoof A; Centler F; Thullner M; Regnier P
    J Contam Hydrol; 2013 Feb; 145():90-104. PubMed ID: 23334209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a lumped-process mathematical model to dissolution of non-uniformly distributed immiscible liquid in heterogeneous porous media.
    Marble JC; DiFilippo EL; Zhang Z; Tick GR; Brusseau ML
    J Contam Hydrol; 2008 Aug; 100(1-2):1-10. PubMed ID: 18555558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.