These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35468592)

  • 1. Passivation efficacy study of Al
    Parakh M; Ramaswamy P; Devkota S; Kuchoor H; Dawkins K; Iyer S
    Nanotechnology; 2022 May; 33(31):. PubMed ID: 35468592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the Valence Band Offset of Al2O3 on Epitaxial GaAs(1-y)Sb(y) with Tunable Antimony Composition.
    Liu JS; Clavel M; Hudait MK
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28624-31. PubMed ID: 26642121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near Full-Composition-Range High-Quality GaAs
    Li L; Pan D; Xue Y; Wang X; Lin M; Su D; Zhang Q; Yu X; So H; Wei D; Sun B; Tan P; Pan A; Zhao J
    Nano Lett; 2017 Feb; 17(2):622-630. PubMed ID: 28103038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse.
    Li Z; Yuan X; Gao Q; Yang I; Li L; Caroff P; Allen M; Allen J; Tan HH; Jagadish C; Fu L
    Nanotechnology; 2020 Mar; 31(24):244002. PubMed ID: 32131061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular beam epitaxial growth of GaAsSb/GaAsSbN/GaAlAs core-multishell nanowires for near-infrared applications.
    Deshmukh P; Li J; Nalamati S; Sharma M; Iyer S
    Nanotechnology; 2019 Jul; 30(27):275203. PubMed ID: 30865932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of n-doping in self-catalyzed GaAsSb nanowires using GaTe dopant source and ensemble nanowire near-infrared photodetector.
    Devkota S; Parakh M; Johnson S; Ramaswamy P; Lowe M; Penn A; Reynolds L; Iyer S
    Nanotechnology; 2020 Dec; 31(50):505203. PubMed ID: 33021209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.
    Zhao C; Ng TK; Prabaswara A; Conroy M; Jahangir S; Frost T; O'Connell J; Holmes JD; Parbrook PJ; Bhattacharya P; Ooi BS
    Nanoscale; 2015 Oct; 7(40):16658-65. PubMed ID: 26242178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrigendum: Space charge limited conduction mechanism in GaAsSb nanowires and the effect of in-situ annealing in ultra-high vacuum (2020 Nanotechnology 31 025205).
    Parakh M; Johnson S; Pokharel R; Ramaswamy P; Nalamati S; Li J; Iyer S
    Nanotechnology; 2020 Mar; ():. PubMed ID: 32187593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced luminescence properties of InAs nanowires via organic and inorganic sulfide passivation.
    Li B; Li S; Sun Y; Li S; Chen G; Wang X
    Nanotechnology; 2019 Nov; 30(44):445704. PubMed ID: 31365914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al
    Black LE; Cavalli A; Verheijen MA; Haverkort JEM; Bakkers EPAM; Kessels WMM
    Nano Lett; 2017 Oct; 17(10):6287-6294. PubMed ID: 28885032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ passivation of GaAsP nanowires.
    Himwas C; Collin S; Rale P; Chauvin N; Patriarche G; Oehler F; Julien FH; Travers L; Harmand JC; Tchernycheva M
    Nanotechnology; 2017 Dec; 28(49):495707. PubMed ID: 29057754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires.
    Kang Y; Lin F; Tang J; Dai Q; Hou X; Meng B; Wang D; Wang L; Wei Z
    Phys Chem Chem Phys; 2023 Jan; 25(2):1248-1256. PubMed ID: 36530045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved performance of GaAsSb/AlGaAs nanowire ensemble Schottky barrier based photodetector via in situ annealing.
    Sharma M; Ahmad E; Dev D; Li J; Reynolds CL; Liu Y; Iyer S
    Nanotechnology; 2019 Jan; 30(3):034005. PubMed ID: 30212376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GaAs/GaAsPBi core-shell nanowires grown by molecular beam epitaxy.
    Himwas C; Yordsri V; Thanachayanont C; Tchernycheva M; Panyakeow S; Kanjanachuchai S
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34781278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of dopant incorporation in Te-doped GaAsSb nanowires using a combination of XPS/UPS, and C-AFM/SKPM.
    Ramaswamy P; Devkota S; Pokharel R; Nalamati S; Stevie F; Jones K; Reynolds L; Iyer S
    Sci Rep; 2021 Apr; 11(1):8329. PubMed ID: 33859310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and optical properties of self-assembled AlN nanowires grown on SiO
    Gačević Ž; Grandal J; Guo Q; Kirste R; Varela M; Sitar Z; Sánchez García MA
    Nanotechnology; 2021 May; 32(19):195601. PubMed ID: 33535196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.
    Xiang Y; Zhou C; Jia E; Wang W
    Nanoscale Res Lett; 2015; 10():137. PubMed ID: 25852428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy.
    Park KW; Park CY; Ravindran S; Jang JS; Jo YR; Kim BJ; Lee YT
    Nanoscale Res Lett; 2014; 9(1):626. PubMed ID: 25489280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors.
    Constantinou M; Stolojan V; Rajeev KP; Hinder S; Fisher B; Bogart TD; Korgel BA; Shkunov M
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22115-20. PubMed ID: 26402417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space charge limited conduction mechanism in GaAsSb nanowires and the effect of in situ annealing in ultra-high vacuum.
    Parakh M; Johnson S; Pokharel R; Ramaswamy P; Nalamati S; Li J; Iyer S
    Nanotechnology; 2020 Jan; 31(2):025205. PubMed ID: 31553959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.