These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35468831)

  • 1. Quantitative phenotyping and evaluation for lettuce leaves of multiple semantic components.
    Du J; Li B; Lu X; Yang X; Guo X; Zhao C
    Plant Methods; 2022 Apr; 18(1):54. PubMed ID: 35468831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LeTra: a leaf tracking workflow based on convolutional neural networks and intersection over union.
    Jurado-Ruiz F; Nguyen TP; Peller J; Aranzana MJ; Polder G; Aarts MGM
    Plant Methods; 2024 Jan; 20(1):11. PubMed ID: 38233879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves.
    Robil JM; Gao K; Neighbors CM; Boeding M; Carland FM; Bunyak F; McSteen P
    Plant J; 2021 Jul; 107(2):629-648. PubMed ID: 33914380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network feature-based phenotyping of leaf venation robustly reconstructs the latent space.
    Iwamasa K; Noshita K
    PLoS Comput Biol; 2023 Jul; 19(7):e1010581. PubMed ID: 37471283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of high-throughput phenotyping with anatomical traits of leaves to help understanding lettuce acclimation to a changing environment.
    Amitrano C; Junker A; D'Agostino N; De Pascale S; De Micco V
    Planta; 2022 Sep; 256(4):68. PubMed ID: 36053378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation.
    Hussein BR; Malik OA; Ong WH; Slik JWF
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMSCNet: A three-stage multi-branch self-correcting trait estimation network for RGB and depth images of lettuce.
    Zhang Q; Zhang X; Wu Y; Li X
    Front Plant Sci; 2022; 13():982562. PubMed ID: 36119576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated, image-based disease measurement for phenotyping resistance to soybean frogeye leaf spot.
    McDonald SC; Buck J; Li Z
    Plant Methods; 2022 Aug; 18(1):103. PubMed ID: 35974392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated and accurate segmentation of leaf venation networks via deep learning.
    Xu H; Blonder B; Jodra M; Malhi Y; Fricker M
    New Phytol; 2021 Jan; 229(1):631-648. PubMed ID: 32964424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.
    Sack L; Scoffoni C; John GP; Poorter H; Mason CM; Mendez-Alonzo R; Donovan LA
    J Exp Bot; 2013 Oct; 64(13):4053-80. PubMed ID: 24123455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population.
    Montes CM; Fox C; Sanz-Sáez Á; Serbin SP; Kumagai E; Krause MD; Xavier A; Specht JE; Beavis WD; Bernacchi CJ; Diers BW; Ainsworth EA
    Genetics; 2022 May; 221(2):. PubMed ID: 35451475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction.
    Gan Y; Rong Y; Huang F; Hu L; Yu X; Duan P; Xiong S; Liu H; Peng J; Yuan X
    Comput Biol Chem; 2019 Jun; 80():187-194. PubMed ID: 30974346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage.
    Xiong X; Yu L; Yang W; Liu M; Jiang N; Wu D; Chen G; Xiong L; Liu K; Liu Q
    Plant Methods; 2017; 13():7. PubMed ID: 28163771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning.
    Lin Z; Fu R; Ren G; Zhong R; Ying Y; Lin T
    Front Plant Sci; 2022; 13():980581. PubMed ID: 36092436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Segmentation-Guided Deep Learning Framework for Leaf Counting.
    Fan X; Zhou R; Tjahjadi T; Das Choudhury S; Ye Q
    Front Plant Sci; 2022; 13():844522. PubMed ID: 35665165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement.
    Maloof JN; Nozue K; Mumbach MR; Palmer CM
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid spatial assessment of leaf-absorbed irradiance.
    Zhang J; Kaiser E; Marcelis LFM; Vialet-Chabrand S
    New Phytol; 2024 Feb; 241(4):1866-1876. PubMed ID: 38124293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on lettuce leaves' moisture prediction based on hyperspectral images].
    Sun J; Wu XH; Zhang XD; Gao HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):522-6. PubMed ID: 23697146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.