These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures. Kim SY; Kim JH; Lee S; Kwak J; Jo Y; Yoon E; Lee GD; Lee Z; Kwon SY Nanoscale; 2018 Oct; 10(40):19212-19219. PubMed ID: 30303224 [TBL] [Abstract][Full Text] [Related]
24. Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Martín-Pérez L; Burzurí E Molecules; 2021 Dec; 26(23):. PubMed ID: 34885953 [TBL] [Abstract][Full Text] [Related]
25. Graphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices. Shin Y; Kwon J; Jeong Y; Watanabe K; Taniguchi T; Im S; Lee GH Small; 2022 Jul; 18(28):e2200882. PubMed ID: 35719033 [TBL] [Abstract][Full Text] [Related]
26. Resonant energy transfer in a van der Waals stacked MoS Roy R; Thapa R; Biswas S; Saha S; Ghorai UK; Sen D; Kumar EM; Kumar GS; Mazumder N; Roy D; Chattopadhyay KK Nanoscale; 2018 Sep; 10(35):16822-16829. PubMed ID: 30167606 [TBL] [Abstract][Full Text] [Related]
27. Interlayer electron modulation in van der Waals heterostructures assembled by stacking monolayer MoS Wang Z; Cao Q; Sotthewes K; Hu Y; Shin HS; Eigler S Nanoscale; 2021 Sep; 13(36):15464-15470. PubMed ID: 34505854 [TBL] [Abstract][Full Text] [Related]
28. Ultrafast charge transfer dynamics pathways in two-dimensional MoS Garcia-Basabe Y; Rocha AR; Vicentin FC; Villegas CEP; Nascimento R; Romani EC; de Oliveira EC; Fechine GJM; Li S; Eda G; Larrude DG Phys Chem Chem Phys; 2017 Nov; 19(44):29954-29962. PubMed ID: 29090284 [TBL] [Abstract][Full Text] [Related]
29. Field Effect in Graphene-Based van der Waals Heterostructures: Stacking Sequence Matters. Stradi D; Papior NR; Hansen O; Brandbyge M Nano Lett; 2017 Apr; 17(4):2660-2666. PubMed ID: 28263606 [TBL] [Abstract][Full Text] [Related]
30. Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS Sun X; Zhang B; Li Y; Luo X; Li G; Chen Y; Zhang C; He J ACS Nano; 2018 Nov; 12(11):11376-11385. PubMed ID: 30335957 [TBL] [Abstract][Full Text] [Related]
31. Versatile, Low-Cost, and Portable 2D Material Transfer Setup with a Facile and Highly Efficient DIY Inert-Atmosphere Glove Compartment Option. Buapan K; Somphonsane R; Chiawchan T; Ramamoorthy H ACS Omega; 2021 Jul; 6(28):17952-17964. PubMed ID: 34308030 [TBL] [Abstract][Full Text] [Related]
32. Hybrid Heterostructures to Generate Long-Lived and Mobile Photocarriers in Graphene. Valencia-Acuna P; Rudayni F; Rijal K; Chan WL; Zhao H ACS Nano; 2023 Feb; 17(4):3939-3947. PubMed ID: 36795092 [TBL] [Abstract][Full Text] [Related]
33. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500 [TBL] [Abstract][Full Text] [Related]
34. Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Liu Z; Qiu H; Wang C; Chen Z; Zyska B; Narita A; Ciesielski A; Hecht S; Chi L; Müllen K; Samorì P Adv Mater; 2020 Jul; 32(26):e2001268. PubMed ID: 32378243 [TBL] [Abstract][Full Text] [Related]
35. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope. Alexeev EM; Catanzaro A; Skrypka OV; Nayak PK; Ahn S; Pak S; Lee J; Sohn JI; Novoselov KS; Shin HS; Tartakovskii AI Nano Lett; 2017 Sep; 17(9):5342-5349. PubMed ID: 28753319 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional Magnetic Oxide-MoS Yang AJ; Wu L; Liu Y; Zhang X; Han K; Huang Y; Li S; Loh XJ; Zhu Q; Su R; Nan CW; Renshaw Wang X Adv Mater; 2023 Aug; 35(33):e2302620. PubMed ID: 37227936 [TBL] [Abstract][Full Text] [Related]
37. Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged Ions. Schwestka J; Inani H; Tripathi M; Niggas A; McEvoy N; Libisch F; Aumayr F; Kotakoski J; Wilhelm RA ACS Nano; 2020 Aug; 14(8):10536-10543. PubMed ID: 32806047 [TBL] [Abstract][Full Text] [Related]
38. MoS Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189 [TBL] [Abstract][Full Text] [Related]
39. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. Iwasaki T; Endo K; Watanabe E; Tsuya D; Morita Y; Nakaharai S; Noguchi Y; Wakayama Y; Watanabe K; Taniguchi T; Moriyama S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8533-8538. PubMed ID: 32027115 [TBL] [Abstract][Full Text] [Related]
40. Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. Zhou KG; Withers F; Cao Y; Hu S; Yu G; Casiraghi C ACS Nano; 2014 Oct; 8(10):9914-24. PubMed ID: 25198732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]