BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35469022)

  • 21. MicroRNAs and spermatogenesis.
    Kotaja N
    Fertil Steril; 2014 Jun; 101(6):1552-62. PubMed ID: 24882619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner.
    Nakamura BN; Lawson G; Chan JY; Banuelos J; Cortés MM; Hoang YD; Ortiz L; Rau BA; Luderer U
    Free Radic Biol Med; 2010 Nov; 49(9):1368-79. PubMed ID: 20692336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene.
    Takahashi H; Koshimizu U; Miyazaki J; Nakamura T
    Dev Biol; 2002 Jan; 241(2):259-72. PubMed ID: 11784110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.
    Selvaratnam JS; Robaire B
    Biol Reprod; 2016 Sep; 95(3):60. PubMed ID: 27465136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice.
    Wang RS; Yeh S; Tzeng CR; Chang C
    Endocr Rev; 2009 Apr; 30(2):119-32. PubMed ID: 19176467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testicular germ cell apoptosis and sperm defects in mice upon long-term high fat diet feeding.
    Ghosh S; Mukherjee S
    J Cell Physiol; 2018 Oct; 233(10):6896-6909. PubMed ID: 29665058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are antioxidants a viable treatment option for male infertility?
    Ali M; Martinez M; Parekh N
    Andrologia; 2021 Feb; 53(1):e13644. PubMed ID: 32427374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice.
    Sinha N; Puri P; Nairn AC; Vijayaraghavan S
    Biol Reprod; 2013 Nov; 89(5):128. PubMed ID: 24089200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidant Enzymes and Male Fertility: Lessons from Knockout Models.
    Scarlata E; O'Flaherty C
    Antioxid Redox Signal; 2020 Mar; 32(8):569-580. PubMed ID: 31891662
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxidative stress in the pathophysiology of male infertility.
    Ritchie C; Ko EY
    Andrologia; 2021 Feb; 53(1):e13581. PubMed ID: 32323352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LanCL2 Implicates in Testicular Redox Homeostasis and Acrosomal Maturation.
    Zhao Y; Wang J; Shi S; Lan X; Cheng X; Li L; Zou Y; Jia L; Liu W; Luo Q; Chen Z; Huang C
    Antioxidants (Basel); 2024 Apr; 13(5):. PubMed ID: 38790639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Obesity, a serious etiologic factor for male subfertility in modern society.
    Liu Y; Ding Z
    Reproduction; 2017 Oct; 154(4):R123-R131. PubMed ID: 28747541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melatonin, advanced oxidation protein products and total antioxidant capacity as seminal parameters of prooxidant-antioxidant balance and their connection with expression of metalloproteinases in context of male fertility.
    Kratz EM; Piwowar A
    J Physiol Pharmacol; 2017 Oct; 68(5):659-668. PubMed ID: 29375040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MAEL promoter hypermethylation is associated with de-repression of LINE-1 in human hypospermatogenesis.
    Cheng YS; Wee SK; Lin TY; Lin YM
    Hum Reprod; 2017 Dec; 32(12):2373-2381. PubMed ID: 29095993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis.
    Yin Y; Liu L; Yang C; Lin C; Veith GM; Wang C; Sutovsky P; Zhou P; Ma L
    J Biol Chem; 2016 Mar; 291(13):6923-35. PubMed ID: 26846852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line.
    Aitken RJ; Curry BJ
    Antioxid Redox Signal; 2011 Feb; 14(3):367-81. PubMed ID: 20522002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An azoospermic factor gene, Ddx3y and its paralog, Ddx3x are dispensable in germ cells for male fertility.
    Matsumura T; Endo T; Isotani A; Ogawa M; Ikawa M
    J Reprod Dev; 2019 Apr; 65(2):121-128. PubMed ID: 30613052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress.
    Smith TB; Baker MA; Connaughton HS; Habenicht U; Aitken RJ
    Free Radic Biol Med; 2013 Dec; 65():872-881. PubMed ID: 23707457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TAp73 is required for spermatogenesis and the maintenance of male fertility.
    Inoue S; Tomasini R; Rufini A; Elia AJ; Agostini M; Amelio I; Cescon D; Dinsdale D; Zhou L; Harris IS; Lac S; Silvester J; Li WY; Sasaki M; Haight J; Brüstle A; Wakeham A; McKerlie C; Jurisicova A; Melino G; Mak TW
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1843-8. PubMed ID: 24449892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of male infertility: role of antioxidants.
    Sheweita SA; Tilmisany AM; Al-Sawaf H
    Curr Drug Metab; 2005 Oct; 6(5):495-501. PubMed ID: 16248841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.