These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35469176)

  • 1. Carbon Nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks.
    Yang W; Cao L; Li W; Du X; Lin Z; Zhang P
    Ionics (Kiel); 2022; 28(7):3489-3500. PubMed ID: 35469176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming waste polypropylene face masks into S-doped porous carbon as the cathode electrode for supercapacitors.
    Hu X; Lin Z
    Ionics (Kiel); 2021; 27(5):2169-2179. PubMed ID: 33623185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors.
    Zhu Z; Gao F; Zhang Z; Zhuang Q; Yu H; Huang Y; Liu Q; Fu M
    J Colloid Interface Sci; 2021 Dec; 603():157-164. PubMed ID: 34186393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molten salt-confined pyrolysis towards carbon nanotube-backboned microporous carbon for high-energy-density and durable supercapacitor electrodes.
    Liu S; Feng Q; Zhang C; Liu T
    Nanotechnology; 2021 Feb; 32(9):095605. PubMed ID: 33207320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors.
    Parayangattil Jyothibasu J; Chen MZ; Lee RH
    ACS Omega; 2020 Mar; 5(12):6441-6451. PubMed ID: 32258879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste-based nanoarchitectonics with face masks as valuable starting material for high-performance supercapacitors.
    Sreńscek-Nazzal J; Serafin J; Kamińska A; Dymerska A; Mijowska E; Michalkiewicz B
    J Colloid Interface Sci; 2022 Dec; 627():978-991. PubMed ID: 35905584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-Co Bimetallic Catalysts for Pyrolysis of Disposable Face Masks and Nitrile Gloves: Synthesis and Characterization of N-Doped Carbon Nanotubes.
    Li H; Tang KY; Yao D; Ye E; Wang CH
    ACS Omega; 2023 Nov; 8(44):41586-41594. PubMed ID: 37970016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CoNi
    Cao X; He J; Li H; Kang L; He X; Sun J; Jiang R; Xu H; Lei Z; Liu ZH
    Small; 2018 Jul; 14(27):e1800998. PubMed ID: 29847710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review.
    Pourebrahimi S
    Sci Total Environ; 2022 Dec; 851(Pt 2):158396. PubMed ID: 36055514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors.
    Zhang A; Zhang H; Hu B; Wang M; Zhang S; Jia Q; He L; Zhang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1257-1267. PubMed ID: 34739989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-Fe chalcogenides anchored carbon matrix and structured core-shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors.
    Khalafallah D; Zhi M; Hong Z
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1352-1363. PubMed ID: 34492471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolitic imidazolate frameworks (ZIFs)-derived Ni
    Xue B; Li K; Gu S; Lu J
    J Colloid Interface Sci; 2018 Nov; 530():233-242. PubMed ID: 29982015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of Hierarchical CNT/rGO-Supported MnMoO
    Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrochemical performance of CuCo
    Li H; Li Z; Wu Z; Sun M; Han S; Cai C; Shen W; Liu X; Fu Y
    J Colloid Interface Sci; 2019 Aug; 549():105-113. PubMed ID: 31026765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From polystyrene waste to porous carbon flake and potential application in supercapacitor.
    Min J; Zhang S; Li J; Klingeler R; Wen X; Chen X; Zhao X; Tang T; Mijowska E
    Waste Manag; 2019 Feb; 85():333-340. PubMed ID: 30803588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosized carbon black combined with Ni2O3 as "universal" catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors.
    Wen X; Chen X; Tian N; Gong J; Liu J; Rümmeli MH; Chu PK; Mijiwska E; Tang T
    Environ Sci Technol; 2014 Apr; 48(7):4048-55. PubMed ID: 24611910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Energy Density of Coaxial Fiber Asymmetric Supercapacitor Based on MoS
    He H; Yang X; Wang L; Zhang X; Li X; Lü W
    Chemistry; 2020 Dec; 26(71):17212-17221. PubMed ID: 32954578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites.
    Zhou Y; Jin P; Zhou Y; Zhu Y
    Sci Rep; 2018 Jun; 8(1):9005. PubMed ID: 29899541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.