These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 354693)
1. Role of arginyl residues in yeast hexokinase PII. Borders CL; Cipollo KL; Jorkasky JF; Neet KE Biochemistry; 1978 Jun; 17(13):2654-8. PubMed ID: 354693 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal. Chollet R Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300 [TBL] [Abstract][Full Text] [Related]
3. pH-dependent effects of Cr(NH3)2ATP on kinetics of yeast hexokinase PII. Relationship to the slow transition mechanism. Peters BA; Neet KE J Biol Chem; 1976 Dec; 251(23):7521-5. PubMed ID: 12169 [TBL] [Abstract][Full Text] [Related]
4. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Malebrán LP; Cardemil E Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal. Peters RG; Jones WC; Cromartie TH Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621 [TBL] [Abstract][Full Text] [Related]
6. An essential arginyl residue in yeast hexokinase. Philips M; Pho DB; Pradel LA Biochim Biophys Acta; 1979 Feb; 566(2):296-304. PubMed ID: 369611 [TBL] [Abstract][Full Text] [Related]
7. Essential arginyl residues in fructose-1,6-bisphosphatase. Marcus F Biochemistry; 1976 Aug; 15(16):3505-9. PubMed ID: 182210 [TBL] [Abstract][Full Text] [Related]
8. Identification of essential arginyl residues in cytoplasmic malate dehydrogenase with butanedione. Bleile DM; Foster M; Brady JW; Harrison JH J Biol Chem; 1975 Aug; 250(16):6222-7. PubMed ID: 1158861 [TBL] [Abstract][Full Text] [Related]
9. Evidence for an essential arginyl residue in bovine milk gamma-glutamyltransferase. Fushiki T; Iwami K; Yasumoto K; Iwai K J Biochem; 1983 Mar; 93(3):795-800. PubMed ID: 6135694 [TBL] [Abstract][Full Text] [Related]
10. Proteolysis of hexokinase PII is not the triggering signal of carbon catabolite derepression in Saccharomyces cerevisiae. Fernández MT; Herrero P; Lopez-Boado YS; Fernández R; Moreno F J Gen Microbiol; 1987 Sep; 133(9):2509-16. PubMed ID: 3329214 [TBL] [Abstract][Full Text] [Related]
12. Essential arginyl residues in mitochondrial adenosine triphosphatase. Marcus F; Schuster SM; Lardy HA J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162 [TBL] [Abstract][Full Text] [Related]
13. Involvement of arginine residues in glutathione binding to yeast glyoxalase I. Schasteen CS; Reed DJ Biochim Biophys Acta; 1983 Jan; 742(2):419-25. PubMed ID: 6337639 [TBL] [Abstract][Full Text] [Related]
14. An essential arginyl residue at the nucleotide binding site of creatine kinase. Borders CL; Riordan JF Biochemistry; 1975 Oct; 14(21):4699-704. PubMed ID: 1237312 [TBL] [Abstract][Full Text] [Related]
15. An essential arginine residue in the active-site pocket of glycogen phosporylase. Li EC; Fletterick RJ; Sygusch J; Madsen NB Can J Biochem; 1977 Apr; 55(4):465-73. PubMed ID: 870152 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver. Ramakrishna S; Benjamin WB Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981 [TBL] [Abstract][Full Text] [Related]
17. Essential thiols of yeast hexokinase: alkylation by a substrate-like reagent. Otieno S; Bhargava AK; Barnard EA; Ramel AH Biochemistry; 1975 Jun; 14(11):2403-10. PubMed ID: 1095053 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of yeast hexokinase by Cibacron Blue 3G-A: spectral, kinetic and structural investigations. Puri RN; Roskoski R Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):91-7. PubMed ID: 8198558 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of yeast hexokinase by o-phthalaldehyde: evidence for the presence of a cysteine and a lysine at or near the active site. Puri RN; Bhatnagar D; Roskoski R Biochim Biophys Acta; 1988 Nov; 957(1):34-46. PubMed ID: 3140897 [TBL] [Abstract][Full Text] [Related]
20. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Danenberg KD; Cleland WW Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]