These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Improved detection of dry age-related macular degeneration from optical coherence tomography images using adaptive window based feature extraction and weighted ensemble based classification approach. Sahoo M; Mitra M; Pal S Photodiagnosis Photodyn Ther; 2023 Jun; 42():103629. PubMed ID: 37244451 [TBL] [Abstract][Full Text] [Related]
6. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes. Motozawa N; An G; Takagi S; Kitahata S; Mandai M; Hirami Y; Yokota H; Akiba M; Tsujikawa A; Takahashi M; Kurimoto Y Ophthalmol Ther; 2019 Dec; 8(4):527-539. PubMed ID: 31407214 [TBL] [Abstract][Full Text] [Related]
7. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
8. CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization. Opoku M; Weyori BA; Adekoya AF; Adu K PLoS One; 2023; 18(11):e0288663. PubMed ID: 38032915 [TBL] [Abstract][Full Text] [Related]
9. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images. Yan Y; Jin K; Gao Z; Huang X; Wang F; Wang Y; Ye J Med Phys; 2021 Sep; 48(9):4926-4934. PubMed ID: 34042194 [TBL] [Abstract][Full Text] [Related]
10. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. Xu Z; Wang W; Yang J; Zhao J; Ding D; He F; Chen D; Yang Z; Li X; Yu W; Chen Y Br J Ophthalmol; 2021 Apr; 105(4):561-566. PubMed ID: 32499330 [TBL] [Abstract][Full Text] [Related]
11. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. Sun Y; Li S; Sun Z J Biomed Opt; 2017 Jan; 22(1):16012. PubMed ID: 28114453 [TBL] [Abstract][Full Text] [Related]
12. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Alqudah AM Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935 [TBL] [Abstract][Full Text] [Related]
13. Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen. Alten F; Lauermann JL; Clemens CR; Heiduschka P; Eter N Graefes Arch Clin Exp Ophthalmol; 2017 Dec; 255(12):2347-2355. PubMed ID: 28983695 [TBL] [Abstract][Full Text] [Related]
14. The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. Wilde C; Patel M; Lakshmanan A; Amankwah R; Dhar-Munshi S; Amoaku W; Eye (Lond); 2015 May; 29(5):602-9; quiz 610. PubMed ID: 25907206 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Schmidt-Erfurth U; Waldstein SM; Klimscha S; Sadeghipour A; Hu X; Gerendas BS; Osborne A; Bogunovic H Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3199-3208. PubMed ID: 29971444 [TBL] [Abstract][Full Text] [Related]
16. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
17. Optical coherence tomography-based measurement of drusen load predicts development of advanced age-related macular degeneration. Nathoo NA; Or C; Young M; Chui L; Fallah N; Kirker AW; Albiani DA; Merkur AB; Forooghian F Am J Ophthalmol; 2014 Oct; 158(4):757-761.e1. PubMed ID: 24983793 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images. Riazi Esfahani P; Reddy AJ; Nawathey N; Ghauri MS; Min M; Wagh H; Tak N; Patel R Cureus; 2023 Jul; 15(7):e41615. PubMed ID: 37565126 [TBL] [Abstract][Full Text] [Related]
19. Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration. Lei J; Balasubramanian S; Abdelfattah NS; Nittala MG; Sadda SR Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1551-1558. PubMed ID: 28534244 [TBL] [Abstract][Full Text] [Related]
20. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]