BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35470238)

  • 21. MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease.
    Battaglia R; Alonzo R; Pennisi C; Caponnetto A; Ferrara C; Stella M; Barbagallo C; Barbagallo D; Ragusa M; Purrello M; Di Pietro C
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon.
    Khan D; Terenzi F; Liu G; Ghosh PK; Ye F; Nguyen K; China A; Ramachandiran I; Chakraborty S; Stefan J; Khan K; Vasu K; Dong F; Willard B; Karn J; Gack MU; Fox PL
    Nat Commun; 2023 Jun; 14(1):3385. PubMed ID: 37296097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and Other Coronaviruses: A Genome-wide Comparative Annotation and Analysis.
    Tarique M; Ahmad S; Malik A; Ahmad I; Saeed M; Almatroudi A; Qadah T; Murad MA; Mashraqi M; Alam Q; Al-Saleh Y
    Mol Cell Biochem; 2021 May; 476(5):2203-2217. PubMed ID: 33564990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data.
    Parker MD; Lindsey BB; Leary S; Gaudieri S; Chopra A; Wyles M; Angyal A; Green LR; Parsons P; Tucker RM; Brown R; Groves D; Johnson K; Carrilero L; Heffer J; Partridge DG; Evans C; Raza M; Keeley AJ; Smith N; Filipe ADS; Shepherd JG; Davis C; Bennett S; Sreenu VB; Kohl A; Aranday-Cortes E; Tong L; Nichols J; Thomson EC; ; Wang D; Mallal S; de Silva TI
    Genome Res; 2021 Apr; 31(4):645-658. PubMed ID: 33722935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients.
    Zou X; Mu S; Wang Y; Guo L; Ren L; Deng X; Li H; Zhao J; Zhang Y; Li H; Lu B; Huang C; Cao B
    Virol Sin; 2022 Feb; 37(1):30-37. PubMed ID: 35234623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SARS-CoV-2 subgenomic RNA: formation process and rapid molecular diagnostic methods.
    Ge X; Zhou H; Shen F; Yang G; Zhang Y; Zhang X; Li H
    Clin Chem Lab Med; 2024 May; 62(6):1019-1028. PubMed ID: 38000044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanopore ReCappable sequencing maps SARS-CoV-2 5' capping sites and provides new insights into the structure of sgRNAs.
    Ugolini C; Mulroney L; Leger A; Castelli M; Criscuolo E; Williamson MK; Davidson AD; Almuqrin A; Giambruno R; Jain M; Frigè G; Olsen H; Tzertzinis G; Schildkraut I; Wulf MG; Corrêa IR; Ettwiller L; Clementi N; Clementi M; Mancini N; Birney E; Akeson M; Nicassio F; Matthews DA; Leonardi T
    Nucleic Acids Res; 2022 Apr; 50(6):3475-3489. PubMed ID: 35244721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of bioinformatics tools to characterize SARS-CoV-2 subgenomic RNAs.
    Lavezzari D; Mori A; Pomari E; Deiana M; Fadda A; Bertoli L; Sinigaglia A; Riccetti S; Barzon L; Piubelli C; Delledonne M; Capobianchi MR; Castilletti C
    Life Sci Alliance; 2023 Dec; 6(12):. PubMed ID: 37748810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19.
    Casagrande M; Fitzek A; Spitzer M; Püschel K; Glatzel M; Krasemann S; Aepfelbacher M; Nörz D; Lütgehetmann M; Pfefferle S; Schultheiss M
    Br J Ophthalmol; 2022 Sep; 106(9):1313-1317. PubMed ID: 33836988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping of the 5' terminal nucleotides of Grapevine leafroll-associated virus 3 sgRNAs.
    Maree HJ; Gardner HF; Freeborough MJ; Burger JT
    Virus Res; 2010 Aug; 151(2):252-5. PubMed ID: 20561952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation.
    Satyanarayana T; Gowda S; Ayllón MA; Albiach-Martí MR; Rabindran S; Dawson WO
    J Virol; 2002 Jan; 76(2):473-83. PubMed ID: 11752137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence of clinically relevant levels of SARS-CoV2 envelope gene subgenomic RNAs in non-immunocompromised individuals.
    Davies M; Bramwell LR; Jeffery N; Bunce B; Lee BP; Knight B; Auckland C; Masoli JA; Harries LW
    Int J Infect Dis; 2022 Mar; 116():418-425. PubMed ID: 34890790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway.
    Schuster S; Zirkel F; Kurth A; van Cleef KW; Drosten C; van Rij RP; Junglen S
    J Virol; 2014 Nov; 88(22):13447-59. PubMed ID: 25210176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2.
    Ringlander J; Fingal J; Kann H; Prakash K; Rydell G; Andersson M; Martner A; Lindh M; Horal P; Hellstrand K; Kann M
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35064076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2.
    Liu G; Jiang H; Chen D; Murchie AIH
    Nucleic Acids Res; 2024 Apr; 52(6):3262-3277. PubMed ID: 38296822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription strategy in a Closterovirus: a novel 5'-proximal controller element of Citrus Tristeza Virus produces 5'- and 3'-terminal subgenomic RNAs and differs from 3' open reading frame controller elements.
    Gowda S; Ayllón MA; Satyanarayana T; Bar-Joseph M; Dawson WO
    J Virol; 2003 Jan; 77(1):340-52. PubMed ID: 12477839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inference of Active Viral Replication in Cases with Sustained Positive Reverse Transcription-PCR Results for SARS-CoV-2.
    Rodríguez-Grande C; Adán-Jiménez J; Catalán P; Alcalá L; Estévez A; Muñoz P; Pérez-Lago L; García de Viedma D
    J Clin Microbiol; 2021 Jan; 59(2):. PubMed ID: 33239378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Successful lung transplantation using an allograft from a COVID-19-recovered donor: a potential role for subgenomic RNA to guide organ utilization.
    Saharia KK; Ramelli SC; Stein SR; Roder AE; Kreitman A; Banakis S; Chung JY; Burbelo PD; Singh M; Reed RM; Patel V; Rabin J; Krupnick AS; Cohen JI; de Wit E; Ghedin E; Hewitt SM; Vannella KM; Chertow DS; Grazioli A
    Am J Transplant; 2023 Jan; 23(1):101-107. PubMed ID: 36695611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of modification of the transcription initiation site context on citrus tristeza virus subgenomic RNA synthesis.
    Ayllón MA; Gowda S; Satyanarayana T; Karasev AV; Adkins S; Mawassi M; Guerri J; Moreno P; Dawson WO
    J Virol; 2003 Sep; 77(17):9232-43. PubMed ID: 12915539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers.
    Dong X; Penrice-Randal R; Goldswain H; Prince T; Randle N; Donovan-Banfield I; Salguero FJ; Tree J; Vamos E; Nelson C; Clark J; Ryan Y; Stewart JP; Semple MG; Baillie JK; Openshaw PJM; Turtle L; Matthews DA; Carroll MW; Darby AC; Hiscox JA
    Gigascience; 2022 May; 11():. PubMed ID: 35639883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.