These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 35470948)

  • 1. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation.
    Ma J; Xing F; Nakaya Y; Shimizu KI; Furukawa S
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202200889. PubMed ID: 35470948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation.
    Ma J; Xing F; Shimizu KI; Furukawa S
    Chem Sci; 2024 Mar; 15(11):4086-4094. PubMed ID: 38487246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Design of Alkyne Semihydrogenation Catalysts via Active Learning.
    Ge X; Yin J; Ren Z; Yan K; Jing Y; Cao Y; Fei N; Liu X; Wang X; Zhou X; Chen L; Yuan W; Duan X
    J Am Chem Soc; 2024 Feb; 146(7):4993-5004. PubMed ID: 38333965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedding Single Pd Atoms on NiGa Intermetallic Surfaces for Efficient and Selective Alkyne Semi-hydrogenation.
    Ge X; Jing Y; Fei N; Yan K; Liang Y; Cao Y; Zhang J; Qian G; Li L; Jiang H; Zhou X; Yuan W; Duan X
    Angew Chem Int Ed Engl; 2024 Jul; ():e202410979. PubMed ID: 38967363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover.
    Zhou S; Zeng A; Lu C; Wang M; Zhou C; Li Q; Dong L; Wang A; Tan L
    Inorg Chem; 2024 Jun; 63(25):11802-11811. PubMed ID: 38861686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally induced intermetallic Rh
    Lan X; Wang Y; Liu B; Kang Z; Wang T
    Chem Sci; 2024 Jan; 15(5):1758-1768. PubMed ID: 38303947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation.
    Liu H; Zhang Y; Zhang L; Mu X; Zhang L; Zhu S; Wang K; Yu B; Jiang Y; Zhou J; Yang F
    J Am Chem Soc; 2024 Jul; ():. PubMed ID: 39004825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes.
    Zhang L; Chen Z; Liu Z; Bu J; Ma W; Yan C; Bai R; Lin J; Zhang Q; Liu J; Wang T; Zhang J
    Nat Commun; 2021 Nov; 12(1):6574. PubMed ID: 34772929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Design of Metastable Phase Catalyst Enables Highly-Performance Selective Hydrogenation.
    Su J; Ji Y; Geng S; Li L; Liu D; Yu H; Song B; Li Y; Pao CW; Hu Z; Huang X; Lu J; Shao Q
    Adv Mater; 2024 Feb; 36(7):e2308839. PubMed ID: 37906727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Selective Acetylene-to-Ethylene Electroreduction Over Cd-Decorated Cu Catalyst with Efficiently Inhibited Carbon-Carbon Coupling.
    Wang Z; Li C; Peng G; Shi R; Shang L; Zhang T
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202400122. PubMed ID: 38494445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene.
    Vito J; Shetty M
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38079586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Active Sites for Highly Efficient Semihydrogenation of Acetylene in Palladium-Copper Nanoalloys.
    Xue F; Li Q; Lv M; Weng S; Li T; Ren Y; Liu Y; Li D; He Y; Li Q; Chen X; Zhang Q; Gu L; Deng J; Chen J; He L; Kuang X; Miao J; Cao Y; Lin K; Xing X
    Nano Lett; 2024 May; 24(21):6269-6277. PubMed ID: 38743874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids.
    Simon I; Hornung J; Barthel J; Thomas J; Finze M; Fischer RA; Janiak C
    Beilstein J Nanotechnol; 2019; 10():1754-1767. PubMed ID: 31501747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titania-Supported Cu-Single-Atom Catalyst for Electrochemical Reduction of Acetylene to Ethylene at Low-Concentrations with Suppressed Hydrogen Evolution.
    Wang Z; Shang L; Yang H; Zhao Y; Waterhouse GIN; Li D; Shi R; Zhang T
    Adv Mater; 2023 Oct; 35(42):e2303818. PubMed ID: 37433306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ultrasmall Ordered High-Entropy Intermetallic with Multiple Active Sites for the Oxygen Reduction Reaction.
    Chen T; Qiu C; Zhang X; Wang H; Song J; Zhang K; Yang T; Zuo Y; Yang Y; Gao C; Xiao W; Jiang Z; Wang Y; Xiang Y; Xia D
    J Am Chem Soc; 2024 Jan; 146(1):1174-1184. PubMed ID: 38153040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pd-Mn/NC Dual Single-Atomic Sites with Hollow Mesopores for the Highly Efficient Semihydrogenation of Phenylacetylene.
    Liu H; Zhu P; Yang D; Zhong C; Li J; Liang X; Wang L; Yin H; Wang D; Li Y
    J Am Chem Soc; 2024 Jan; 146(3):2132-2140. PubMed ID: 38226630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing Diluted Active Sites of Ultrasmall High-Entropy Intermetallics for Efficient Formic Acid Electrooxidation.
    Shen T; Xiao D; Deng Z; Wang S; An L; Song M; Zhang Q; Zhao T; Gong M; Wang D
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202403260. PubMed ID: 38503695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-Confined Sub-2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High-Performance Catalysts for Selective Hydrogenation of Acetylene.
    Hu M; Zhao S; Liu S; Chen C; Chen W; Zhu W; Liang C; Cheong WC; Wang Y; Yu Y; Peng Q; Zhou K; Li J; Li Y
    Adv Mater; 2018 Jul; ():e1801878. PubMed ID: 29962046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Organic Molecular Mimetic Metal-Free Heterogeneous Catalyst for Electrocatalytic Alkyne Semihydrogenation.
    Song Z; Yang R; Liu X; Zhang B; Wu Y
    Angew Chem Int Ed Engl; 2024 Jul; ():e202410200. PubMed ID: 39008407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylene and Ethylene Adsorption during Floating Fe Catalyst Formation at the Onset of Carbon Nanotube Growth and the Effect of Sulfur Poisoning: a DFT Study.
    Orbán B; Höltzl T
    Inorg Chem; 2024 Jul; 63(29):13624-13635. PubMed ID: 38986139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.