These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35471100)

  • 1. Quantum Simulations of Vibrational Strong Coupling via Path Integrals.
    Li TE; Nitzan A; Hammes-Schiffer S; Subotnik JE
    J Phys Chem Lett; 2022 May; 13(17):3890-3895. PubMed ID: 35471100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling.
    Li TE; Subotnik JE; Nitzan A
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18324-18331. PubMed ID: 32680967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Vibrational Strong Coupling Effects on Molecular Vibrational Relaxation and Energy Transfer: Numerical Insights via Cavity Molecular Dynamics Simulations*.
    Li TE; Nitzan A; Subotnik JE
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15533-15540. PubMed ID: 33957010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies of IR spectra of deprotonated serine with classical and thermostated ring polymer molecular dynamics simulations.
    Inakollu VSS; Yu H
    Struct Dyn; 2021 Sep; 8(5):054101. PubMed ID: 34549074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidimensional Quantum Dynamical Simulation of Infrared Spectra under Polaritonic Vibrational Strong Coupling.
    Yu Q; Hammes-Schiffer S
    J Phys Chem Lett; 2022 Dec; 13(48):11253-11261. PubMed ID: 36448842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi's golden rule rate.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2022 Apr; 156(13):134106. PubMed ID: 35395873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerically Exact Solution for a Real Polaritonic System under Vibrational Strong Coupling in Thermodynamic Equilibrium: Loss of Light-Matter Entanglement and Enhanced Fluctuations.
    Sidler D; Ruggenthaler M; Rubio A
    J Chem Theory Comput; 2023 Dec; 19(23):8801-8814. PubMed ID: 37972347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Vibrational Strong Coupling on an Ordered Liquid Crystal.
    Stemo G; Yamada H; Katsuki H; Yanagi H
    J Phys Chem B; 2022 Nov; 126(45):9399-9407. PubMed ID: 36331314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling.
    Yang PY; Cao J
    J Phys Chem Lett; 2021 Oct; 12(39):9531-9538. PubMed ID: 34569800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance theory and quantum dynamics simulations of vibrational polariton chemistry.
    Ying W; Huo P
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Role of Symmetry in Vibrational Strong Coupling: The Case of Charge-Transfer Complexation.
    Pang Y; Thomas A; Nagarajan K; Vergauwe RMA; Joseph K; Patrahau B; Wang K; Genet C; Ebbesen TW
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10436-10440. PubMed ID: 32220038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime.
    Imperatore MV; Asbury JB; Giebink NC
    J Chem Phys; 2021 May; 154(19):191103. PubMed ID: 34240900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics.
    Li TE; Hammes-Schiffer S
    J Am Chem Soc; 2023 Jan; 145(1):377-384. PubMed ID: 36574620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Polaritonic Chemistry by Nuclear Magnetic Resonance Spectroscopy.
    Patrahau B; Piejko M; Mayer RJ; Antheaume C; Sangchai T; Ragazzon G; Jayachandran A; Devaux E; Genet C; Moran J; Ebbesen TW
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202401368. PubMed ID: 38584127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations.
    Hu D; Ying W; Huo P
    J Phys Chem Lett; 2023 Dec; 14(49):11208-11216. PubMed ID: 38055902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity-catalyzed hydrogen transfer dynamics in an entangled molecular ensemble under vibrational strong coupling.
    Fischer EW; Saalfrank P
    Phys Chem Chem Phys; 2023 Apr; 25(16):11771-11779. PubMed ID: 37067354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path Integral Simulations of Condensed-Phase Vibrational Spectroscopy.
    Althorpe SC
    Annu Rev Phys Chem; 2024 Jun; 75(1):397-420. PubMed ID: 38941531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2021 Mar; 154(9):094124. PubMed ID: 33685184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical, Thermostated Ring Polymer, and Quantum VSCF/VCI Calculations of IR Spectra of H
    Yu Q; Bowman JM
    J Phys Chem A; 2019 Feb; 123(7):1399-1409. PubMed ID: 30657683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling.
    Yu Q; Bowman JM
    Nat Commun; 2023 Jun; 14(1):3527. PubMed ID: 37316497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.