These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35471195)

  • 1.
    Rangarajan AA; Chia HE; Azaldegui CA; Olszewski MH; Pereira GV; Koropatkin NM; Biteen JS
    Microbiology (Reading); 2022 Apr; 168(4):. PubMed ID: 35471195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon.
    Ze X; Duncan SH; Louis P; Flint HJ
    ISME J; 2012 Aug; 6(8):1535-43. PubMed ID: 22343308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insights Into the Cross-Feeding of
    Crost EH; Le Gall G; Laverde-Gomez JA; Mukhopadhya I; Flint HJ; Juge N
    Front Microbiol; 2018; 9():2558. PubMed ID: 30455672
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Wong JPH; Chillier N; Fischer-Stettler M; Zeeman SC; Battin TJ; Persat A
    mBio; 2024 Mar; 15(3):e0259923. PubMed ID: 38376161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii.
    Ze X; Ben David Y; Laverde-Gomez JA; Dassa B; Sheridan PO; Duncan SH; Louis P; Henrissat B; Juge N; Koropatkin NM; Bayer EA; Flint HJ
    mBio; 2015 Sep; 6(5):e01058-15. PubMed ID: 26419877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sas20 is a highly flexible starch-binding protein in the Ruminococcus bromii cell-surface amylosome.
    Cerqueira FM; Photenhauer AL; Doden HL; Brown AN; Abdel-Hamid AM; Moraïs S; Bayer EA; Wawrzak Z; Cann I; Ridlon JM; Hopkins JB; Koropatkin NM
    J Biol Chem; 2022 May; 298(5):101896. PubMed ID: 35378131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ruminococcus bromii amylosome protein Sas6 binds single and double helical α-glucan structures in starch.
    Photenhauer AL; Villafuerte-Vega RC; Cerqueira FM; Armbruster KM; Mareček F; Chen T; Wawrzak Z; Hopkins JB; Vander Kooi CW; Janeček Š; Ruotolo BT; Koropatkin NM
    Nat Struct Mol Biol; 2024 Feb; 31(2):255-265. PubMed ID: 38177679
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Schaus SR; Vasconcelos Pereira G; Luis AS; Madlambayan E; Terrapon N; Ostrowski MP; Jin C; Henrissat B; Hansson GC; Martens EC
    mBio; 2024 Jul; ():e0003924. PubMed ID: 38975756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acarbose Impairs Gut
    Brown HA; Morris AL; Pudlo NA; Hopkins AE; Martens EC; Golob JL; Koropatkin NM
    bioRxiv; 2024 May; ():. PubMed ID: 38826241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the interactive mechanism of acarbose with the amylase SusG in the starch utilization system of the human gut symbiont Bacteroides thetaiotaomicron through molecular modeling.
    Kwain S; Dominy BN; Whitehead KJ; Miller BA; Whitehead DC
    Chem Biol Drug Des; 2023 Sep; 102(3):486-499. PubMed ID: 37062591
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Schaus SR; Vasconcelos Periera G; Luis AS; Madlambayan E; Terrapon N; Ostrowski MP; Jin C; Hansson GC; Martens EC
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii.
    Mukhopadhya I; Moraïs S; Laverde-Gomez J; Sheridan PO; Walker AW; Kelly W; Klieve AV; Ouwerkerk D; Duncan SH; Louis P; Koropatkin N; Cockburn D; Kibler R; Cooper PJ; Sandoval C; Crost E; Juge N; Bayer EA; Flint HJ
    Environ Microbiol; 2018 Jan; 20(1):324-336. PubMed ID: 29159997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates.
    Ze X; Le Mougen F; Duncan SH; Louis P; Flint HJ
    Gut Microbes; 2013; 4(3):236-40. PubMed ID: 23549436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteroides thetaiotaomicron.
    Porter NT; Luis AS; Martens EC
    Trends Microbiol; 2018 Nov; 26(11):966-967. PubMed ID: 30193959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and Alteration of Organic Acid Synthesis Pathways in the Mammalian Gut Symbiont Bacteroides thetaiotaomicron.
    Porter NT; Larsbrink J
    Microbiol Spectr; 2022 Feb; 10(1):e0231221. PubMed ID: 35196806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases.
    Cockburn DW; Kibler R; Brown HA; Duvall R; Moraïs S; Bayer E; Koropatkin NM
    J Struct Biol; 2021 Sep; 213(3):107765. PubMed ID: 34186214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient-dependent morphological variability of
    Rangarajan AA; Koropatkin NM; Biteen JS
    Microbiology (Reading); 2020 Jul; 166(7):624-628. PubMed ID: 32416743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.
    Cameron EA; Kwiatkowski KJ; Lee BH; Hamaker BR; Koropatkin NM; Martens EC
    mBio; 2014 Sep; 5(5):e01441-14. PubMed ID: 25205092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.
    Karunatilaka KS; Cameron EA; Martens EC; Koropatkin NM; Biteen JS
    mBio; 2014 Nov; 5(6):e02172. PubMed ID: 25389179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG.
    Arnal G; Cockburn DW; Brumer H; Koropatkin NM
    Protein Sci; 2018 Jun; 27(6):1093-1101. PubMed ID: 29603462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.