These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35471272)

  • 1. Machine learning methods for identification and classification of events in
    Kandamali DF; Cao X; Tian M; Jin Z; Dong H; Yu K
    Appl Opt; 2022 Apr; 61(11):2975-2997. PubMed ID: 35471272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning.
    Shi Y; Wang Y; Zhao L; Fan Z
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction.
    Sun Q; Feng H; Yan X; Zeng Z
    Sensors (Basel); 2015 Jun; 15(7):15179-97. PubMed ID: 26131671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Event recognition method based on feature synthesizing for a zero-shot intelligent distributed optical fiber sensor.
    Shi Y; Liu H; Zhang W; Cheng Z; Chen J; Sun Q
    Opt Express; 2024 Feb; 32(5):8321-8334. PubMed ID: 38439490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse-Width Multiplexing
    Zhong X; Gao X; Deng H; Zhao S; Ma M; Zhang J; Li J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks.
    Kayan CE; Yuksel Aldogan K; Gumus A
    Appl Opt; 2023 Mar; 62(7):1753-1764. PubMed ID: 37132922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks.
    Peng Z; Wen H; Jian J; Gribok A; Wang M; Huang S; Liu H; Mao ZH; Chen KP
    Sci Rep; 2020 Dec; 10(1):21014. PubMed ID: 33273503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-Optic Telecommunication Network Wells Monitoring by Phase-Sensitive Optical Time-Domain Reflectometer with Disturbance Recognition.
    Zhirnov AA; Chesnokov GY; Stepanov KV; Gritsenko TV; Khan RI; Koshelev KI; Chernutsky AO; Svelto C; Pnev AB; Valba OV
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-noise and high-sensitivity Φ-OTDR based on an optimized dual-pulse heterodyne detection scheme.
    Ju Z; Yu Z; Hou Q; Lou K; Chen M; Lu Y; Meng Z
    Appl Opt; 2020 Mar; 59(7):1864-1870. PubMed ID: 32225702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuisance alarm reduction: Using a correlation based algorithm above differential signals in direct detected phase-OTDR systems.
    Adeel M; Shang C; Zhu K; Lu C
    Opt Express; 2019 Mar; 27(5):7685-7698. PubMed ID: 30876329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Φ-OTDR Vibration Event Recognition Based on Image Target Detection.
    Yang N; Zhao Y; Chen J
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology.
    Liu Y; Yang J; Wu B; Lu B; Shuai L; Wang Z; Ye L; Ying K; Ye Q; Qu R; Cai H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and Recognition of Voice Commands by a Distributed Acoustic Sensor Based on Phase-Sensitive OTDR in the Smart Home Concept.
    Gritsenko TV; Orlova MV; Zhirnov AA; Konstantinov YA; Turov AT; Barkov FL; Khan RI; Koshelev KI; Svelto C; Pnev AB
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy.
    Shi Y; Feng H; Zeng Z
    Sensors (Basel); 2015 Sep; 15(9):21957-70. PubMed ID: 26340628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised Anomaly Detection Applied to Φ-OTDR.
    Almudévar A; Sevillano P; Vicente L; Preciado-Garbayo J; Ortega A
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single and composite disturbance event recognition based on the DBN-GRU network in φ-OTDR.
    Liu M; Wang X; Liang S; Sheng X; Lou S
    Appl Opt; 2023 Jan; 62(1):133-141. PubMed ID: 36606858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficient disturbance event recognition method of
    Huang Y; Cheng S; Li Y; Chen X; Dai J; Hu C; Deng C; Pang F; Zhang X; Wang T
    Appl Opt; 2022 Aug; 61(22):6609-6616. PubMed ID: 36255887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Distributed Fiber Acoustic Sensing with Φ-OTDR.
    Wang Z; Lu B; Ye Q; Cai H
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.
    Peng F; Wu H; Jia XH; Rao YJ; Wang ZN; Peng ZP
    Opt Express; 2014 Jun; 22(11):13804-10. PubMed ID: 24921572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Multi-Class Disturbance Detection for Φ-OTDR Based on YOLO Algorithm.
    Xu W; Yu F; Liu S; Xiao D; Hu J; Zhao F; Lin W; Wang G; Shen X; Wang W; Wang F; Liu H; Shum PP; Shao L
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.