These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35471283)
1. Understanding and reducing mid-spatial frequency ripples during hemispherical sub-aperture tool glass polishing. Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B Appl Opt; 2022 Apr; 61(11):3084-3095. PubMed ID: 35471283 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms influencing and prediction of tool influence function spots during hemispherical sub-aperture tool polishing on fused silica. Suratwala T; Menapace J; Steele R; Wong L; Tham G; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Jan; 60(1):201-214. PubMed ID: 33362091 [TBL] [Abstract][Full Text] [Related]
3. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing. Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Feb; 60(4):1041-1050. PubMed ID: 33690410 [TBL] [Abstract][Full Text] [Related]
4. Understanding the tool influence function during sub-aperture belt-on-wheel glass polishing. Suratwala T; Ross J; Steele R; Tham G; Wong L; Wolfs F; Defisher S; Bechtold R; Rinkus M; Mah C Appl Opt; 2023 Jan; 62(1):91-101. PubMed ID: 36606856 [TBL] [Abstract][Full Text] [Related]
5. Smoothing tool design and performance during subaperture glass polishing. Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094 [TBL] [Abstract][Full Text] [Related]
6. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing. Wan K; Wan S; Jiang C; Wei C; Shao J Opt Express; 2022 Feb; 30(5):6603-6616. PubMed ID: 35299441 [TBL] [Abstract][Full Text] [Related]
7. Surface ripple suppression in subaperture polishing with fragment-type tool paths. Dong Z; Nai W Appl Opt; 2018 Jul; 57(19):5523-5532. PubMed ID: 30117848 [TBL] [Abstract][Full Text] [Related]
8. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227 [TBL] [Abstract][Full Text] [Related]
9. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing. Wan S; Wei C; Hong Z; Shao J Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511 [TBL] [Abstract][Full Text] [Related]
10. The characteristics of optics polished with a polyurethane pad. Li Y; Hou J; Xu Q; Wang J; Yang W; Guo Y Opt Express; 2008 Jul; 16(14):10285-93. PubMed ID: 18607437 [TBL] [Abstract][Full Text] [Related]
11. Method to improve the surface shape of BK7 glass in full-aperture polishing. Zhang F; Wang Y Appl Opt; 2021 Aug; 60(23):6910-6917. PubMed ID: 34613172 [TBL] [Abstract][Full Text] [Related]
12. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors. Bao J; Peng X; Hu H; Lai T Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044 [TBL] [Abstract][Full Text] [Related]
13. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres. Suratwala T; Steele R; Feit M; Dylla-Spears R; Desjardin R; Mason D; Wong L; Geraghty P; Miller P; Shen N J Vis Exp; 2014 Dec; (94):. PubMed ID: 25489745 [TBL] [Abstract][Full Text] [Related]
14. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate. Dong Z; Cheng H; Tam HY Appl Opt; 2014 Apr; 53(11):2455-64. PubMed ID: 24787418 [TBL] [Abstract][Full Text] [Related]
15. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing. Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896 [TBL] [Abstract][Full Text] [Related]
16. Development analysis of magnetorheological precession finishing (MRPF) technology. Liu J; He J; Peng Y Opt Express; 2023 Dec; 31(26):43535-43549. PubMed ID: 38178447 [TBL] [Abstract][Full Text] [Related]
17. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces. Wang B; Tie G; Shi F; Song C; Guo S Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243 [TBL] [Abstract][Full Text] [Related]
18. The Cause of Ribbon Fluctuation in Magnetorheological Finishing and Its Influence on Surface Mid-Spatial Frequency Error. Wang B; Shi F; Tie G; Zhang W; Song C; Tian Y; Shen Y Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630164 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of the glazing state of the pitch polishing lap by an image texture analysis method in full-aperture continuous polishing. Liao D; Xie R; Zhao S; Xu Q Appl Opt; 2023 Jun; 62(17):4551-4556. PubMed ID: 37707151 [TBL] [Abstract][Full Text] [Related]
20. Optimization technique for rolled edge control process based on the acentric tool influence functions. Du H; Song C; Li S; Xu M; Peng X Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]