BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35471292)

  • 1. Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method.
    Li X; Duan F; Fu X; Bao R; Jiang J; Zhang C
    Appl Opt; 2022 Apr; 61(11):3150-3155. PubMed ID: 35471292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision.
    Jiang S; Liu B; Wang H; Zhao B
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Unwrapping and Frequency Points Subdivision of the Frequency Sweeping Interferometry Based Absolute Ranging System.
    Song L; Shi G; Liu H; Lin H; Zhang F; Sun D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid measurement method for structured surface in white light interferometry.
    Lei Z; Liu X; Zhao LI; Yang W; Chen C; Guo X
    J Microsc; 2019 Dec; 276(3):118-127. PubMed ID: 31696930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed nonlinear frequency sweeping signal distance extraction algorithm based on the table lookup method.
    Bao R; Yu Z; Fu X; Duan F; Liu W; Guo G
    Appl Opt; 2023 Oct; 62(29):7819-7827. PubMed ID: 37855492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Analysis of Surface Reconstruction Algorithms in Vertical Scanning Interferometry Based on Coherence Envelope Detection.
    Wu D; Liang F; Kang C; Fang F
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33567494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.
    Jiang J; Wang S; Liu T; Liu K; Yin J; Meng X; Zhang Y; Wang S; Qin Z; Wu F; Li D
    Opt Express; 2012 Jul; 20(16):18117-26. PubMed ID: 23038359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform.
    Deng W; Liu Z; Deng Z; Jia X; Wang Z
    Appl Opt; 2018 Mar; 57(9):2299-2305. PubMed ID: 29604029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb.
    Niu Q; Song M; Zheng J; Jia L; Liu J; Ni L; Nian J; Cheng X; Zhang F; Qu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Distance Measurement Based on a Fast Frequency-Swept Interferometry.
    Chen Y; Lei X; Xiao L; Zhang P; Liu X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast algorithm of single frequency-swept interferometry for the dynamic axial clearance measurement of high-speed rotating machinery.
    Ren Y; Hao L; Peng Z; Lei X; Liu X; Chen W
    Opt Express; 2023 Jan; 31(3):4253-4267. PubMed ID: 36785398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on Fiber-Optic Optical Coherence Ranging System Based on Laser Frequency Scanning Interferometry.
    Zhou Y; Yuan Y; Su M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast fringe projection profilometry using 3  +  1 phase retrieval strategy and fringe order correction.
    Li F; Hu J; Zhang S; Hu Y; Xia C; Hao Q
    Appl Opt; 2023 Jan; 62(2):348-356. PubMed ID: 36630233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave Absolute Distance Measurement Method with Ten-Micron-Level Accuracy and Meter-Level Range Based on Frequency Domain Interferometry.
    Tang L; Jia X; Ma H; Liu S; Chen Y; Tao T; Chen L; Wu J; Li C; Wang X; Weng J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Algorithms of Data Processing for Dispersive Interferometry Using a Femtosecond Laser.
    Liu T; Wu J; Suzuki A; Sato R; Matsukuma H; Gao W
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis.
    Trusiak M; Służewski Ł; Patorski K
    Opt Express; 2016 Feb; 24(4):4221-38. PubMed ID: 26907070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly precise thickness measurement of multilayer films based on the cross-correlation algorithm using a widely tunable MG-Y laser.
    Cheung Y; Jing Z; Li A; Cao P; Zhou DP; Peng W
    Appl Opt; 2024 May; 63(13):3570-3575. PubMed ID: 38856542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Demodulation Method for Fringe Projection Measurement Based on Improved Variable-Frequency Coded Patterns.
    Lv S; Jiang M; Su C; Zhang L; Zhang F; Sui Q; Jia L
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Data-Processing Algorithms for Dispersive Interferometry Using a Femtosecond Laser.
    Liu T; Matsukuma H; Suzuki A; Sato R; Gao W
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser.
    Liu T; Matsukuma H; Suzuki A; Sato R; Gao W
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.