These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35471356)

  • 1. Physics-driven learning of Wasserstein GAN for density reconstruction in dynamic tomography.
    Huang Z; Klasky M; Wilcox T; Ravishankar S
    Appl Opt; 2022 Apr; 61(10):2805-2817. PubMed ID: 35471356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss.
    Luo TJ; Fan Y; Chen L; Guo G; Zhou C
    Front Neuroinform; 2020; 14():15. PubMed ID: 32425763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rectified Wasserstein Generative Adversarial Networks for Perceptual Image Restoration.
    Ma H; Liu D; Wu F
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3648-3663. PubMed ID: 35731773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-scan artifact correction using generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Comput Biol Med; 2021 May; 132():104313. PubMed ID: 33705996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-precision inversion of dynamic radiography using hydrodynamic features.
    Hossain M; Nadiga BT; Korobkin O; Klasky ML; Schei JL; Burby JW; McCann MT; Wilcox T; De S; Bouman CA
    Opt Express; 2022 Apr; 30(9):14432-14452. PubMed ID: 35473186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
    Gong Y; Shan H; Teng Y; Tu N; Li M; Liang G; Wang G; Wang S
    IEEE Trans Radiat Plasma Med Sci; 2021 Mar; 5(2):213-223. PubMed ID: 35402757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy.
    Yang R; Li Y; Qin B; Zhao D; Gan Y; Zheng J
    RSC Adv; 2022 Jan; 12(3):1769-1776. PubMed ID: 35425184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering Analysis via Deep Generative Models With Mixture Models.
    Yang L; Fan W; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):340-350. PubMed ID: 33048769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging.
    Chen X; Wang H; Razi A; Kozicki M; Mann C
    Opt Express; 2023 Mar; 31(6):10114-10135. PubMed ID: 37157567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
    Yang Q; Yan P; Zhang Y; Yu H; Shi Y; Mou X; Kalra MK; Zhang Y; Sun L; Wang G
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1348-1357. PubMed ID: 29870364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction.
    Lv J; Li G; Tong X; Chen W; Huang J; Wang C; Yang G
    Comput Biol Med; 2021 Jul; 134():104504. PubMed ID: 34062366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network.
    Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y
    Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.