These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35471402)

  • 1. Speckle-based deep learning approach for classification of orbital angular momentum modes.
    Raskatla V; Singh BP; Patil S; Kumar V; Singh RP
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):759-765. PubMed ID: 35471402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferometric orbital angular momentum mode detection in turbulence with deep learning.
    Cox MA; Celik T; Genga Y; Drozdov AV
    Appl Opt; 2022 Mar; 61(7):D1-D6. PubMed ID: 35297822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approach to OAM beam demultiplexing via convolutional neural networks.
    Doster T; Watnik AT
    Appl Opt; 2017 Apr; 56(12):3386-3396. PubMed ID: 28430266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network.
    Li X; Sun L; Huang J; Zeng F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled mode theory for orbital angular momentum modes transmission in the presence of atmosphere turbulence.
    Zhou J; Zong J; Liu D
    Opt Express; 2015 Dec; 23(25):31964-76. PubMed ID: 26698988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean.
    Li Y; Yu L; Zhang Y
    Opt Express; 2017 May; 25(11):12203-12215. PubMed ID: 28786579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence.
    Na Y; Ko DK
    Sci Rep; 2021 Dec; 11(1):23505. PubMed ID: 34873262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor.
    Pan X; Yu S; Zhou Y; Zhang K; Zhang K; Lv S; Li S; Wang W; Jing J
    Phys Rev Lett; 2019 Aug; 123(7):070506. PubMed ID: 31491123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hermite-Gaussian modal laser beams with orbital angular momentum.
    Kotlyar VV; Kovalev AA
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):274-82. PubMed ID: 24562026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic Generation of Orbital-Angular-Momentum Multiplexed Tripartite Entanglement.
    Li S; Pan X; Ren Y; Liu H; Yu S; Jing J
    Phys Rev Lett; 2020 Feb; 124(8):083605. PubMed ID: 32167349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of deep neural networks in optical communications.
    Lohani S; Knutson EM; O'Donnell M; Huver SD; Glasser RT
    Appl Opt; 2018 May; 57(15):4180-4190. PubMed ID: 29791393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.
    Chen C; Yang H
    Opt Express; 2016 Aug; 24(17):19713-27. PubMed ID: 27557248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak turbulence effects on different beams carrying orbital angular momentum.
    Ferlic NA; van Iersel M; Davis CC
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1423-1437. PubMed ID: 34612971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning.
    Lamilla E; Sacarelo C; Alvarez-Alvarado MS; Pazmino A; Iza P
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure of perturbed Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge.
    Volyar A; Abramochkin E; Egorov Y; Bretsko M; Akimova Y
    Appl Opt; 2020 Sep; 59(25):7680-7687. PubMed ID: 32902469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Opt Express; 2016 Apr; 24(7):6959-75. PubMed ID: 27136990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode power spectrum for Laguerre-Gauss beams in Kolmogorov turbulence.
    Elder HF; Sprangle P
    Opt Lett; 2022 Jul; 47(14):3447-3450. PubMed ID: 35838700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks.
    Luan H; Lin D; Li K; Meng W; Gu M; Fang X
    Opt Express; 2021 Jun; 29(13):19807-19818. PubMed ID: 34266083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full mode power spectrum for Laguerre-Gauss beams in strong Kolmogorov turbulence.
    Elder HF; Sprangle P
    Opt Express; 2022 Dec; 30(25):45508-45516. PubMed ID: 36522955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.