BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 35471408)

  • 1. A high-performance GelMA-GelMA homogeneous double-network hydrogel assisted by 3D printing.
    Dong Y; Zhang M; Han D; Deng Z; Cao X; Tian J; Ye Q
    J Mater Chem B; 2022 May; 10(20):3906-3915. PubMed ID: 35471408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering.
    Zhang Y; Chen H; Li J
    Int J Biol Macromol; 2022 Nov; 221():91-107. PubMed ID: 36057299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
    Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X
    Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting.
    Lee Y; Park JA; Tuladhar T; Jung S
    Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.
    Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H
    Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printable Composite Biomaterials Based on GelMA and Hydroxyapatite Powders Doped with Cerium Ions for Bone Tissue Regeneration.
    Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Stavarache C; Ianchis R; Iovu H; Costache M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.
    Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing.
    Wang Y; Yang S; Cai H; Hu H; Hu K; Sun Z; Liu R; Wei Y; Han L
    Sci Rep; 2024 Feb; 14(1):4118. PubMed ID: 38374394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing GelMA/PVA Interpenetrating Polymer Networks Scaffolds Mediated with CuO Nanoparticles for Angiogenesis.
    Hu Q; Lu R; Liu S; Liu Y; Gu Y; Zhang H
    Macromol Biosci; 2022 Oct; 22(10):e2200208. PubMed ID: 35904133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels.
    Young AT; White OC; Daniele MA
    Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Properties of Gelatin Methacryloyl (GelMA) Synthesized in Different Reaction Systems.
    Chen S; Wang Y; Lai J; Tan S; Wang M
    Biomacromolecules; 2023 Jun; 24(6):2928-2941. PubMed ID: 37212876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Network Hydrogel with Strengthened Mechanical Property for Controllable Release of Antibacterial Peptide.
    Tan T; Hou Y; Zhang Y; Wang B
    Biomacromolecules; 2024 Mar; 25(3):1850-1860. PubMed ID: 38416425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure.
    Chen Q; Zou B; Wang X; Zhou X; Yang G; Lai Q; Zhao Y
    J Mech Behav Biomed Mater; 2024 Jul; 155():106553. PubMed ID: 38640694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering.
    Sakr MA; Sakthivel K; Hossain T; Shin SR; Siddiqua S; Kim J; Kim K
    J Biomed Mater Res A; 2022 Mar; 110(3):708-724. PubMed ID: 34558808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.