These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35471433)

  • 1. Wideband, high spectral resolution UV convex grating imaging spectrometer based on an Offner structure.
    Xue Q; Yang J; Huang L; Bai H; Lu J
    Appl Opt; 2022 Apr; 61(12):3371-3380. PubMed ID: 35471433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact multi-spectral-resolution Wynne-Offner imaging spectrometer with a long slit.
    Zhang X; Gao Y; Ji Y; Feng A; Zhao S; Wang C
    Appl Opt; 2024 Feb; 63(6):1577-1582. PubMed ID: 38437371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High spectral resolution compact Offner spectrometer based on the aberration-reduced convex holographic gratings recorded by spherical waves under Rowland circle mounting.
    Feng A; Zhao S; Han J; Tan F; Zeng C; Ji Y
    Appl Opt; 2022 May; 61(13):3893-3900. PubMed ID: 36256434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral push-broom imager using a volume Bragg grating as an angular filter.
    Song JH; Kwon YH
    Opt Express; 2024 Mar; 32(6):8736-8750. PubMed ID: 38571124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A wide-field push-broom hyperspectral imager based on curved prism].
    Nie YF; Xiangli B; Zhou JS; Huang M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1708-11. PubMed ID: 22870671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection.
    Fan J; Wang Y; Gu G; Li Z; Wang X; Li H; Li B; Hu D
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Measuring method of spatial and spectral distribution of hollow cathode lamp].
    Wu ZZ; Du XW; Li CY; Ke GY; Wang QP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Oct; 31(10):2647-50. PubMed ID: 22250526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep ultraviolet high-resolution microscopic hyperspectral imager and its biological tissue detection.
    Yang J; Xue Q; Li J; Han B; Wang Y; Bai H
    Appl Opt; 2023 May; 62(13):3310-3319. PubMed ID: 37132831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-aperture UV (250~400 nm) imaging spectrometer based on a solid Sagnac interferometer.
    Yang W; Liao N; He S; Cheng H; Li H
    Opt Express; 2018 Dec; 26(26):34503-34514. PubMed ID: 30650873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and optimization method of a convex blazed grating in the Offner imaging spectrometer.
    Xiong Z; He W; Wang Q; Liu Z; Fu Y; Kong D
    Appl Opt; 2021 Jan; 60(2):383-391. PubMed ID: 33448963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical design of a high-performing +1st order diffraction convex grating imaging spectrometer.
    Shen YH; Ni ZJ; Huang YS; Sheng B; Xu BL; Guo MQ; Xu MJ
    Appl Opt; 2020 Apr; 59(12):3760-3765. PubMed ID: 32400503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacture of the compact conical diffraction Offner hyperspectral imaging spectrometer.
    Pan Q; Chen X; Zhou J; Liu Q; Zhao Z; Shen W
    Appl Opt; 2019 Sep; 58(27):7298-7304. PubMed ID: 31674373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Practical Method for Blind Pixel Detection for the Push-Broom Thermal-Infrared Hyperspectral Imager.
    Liu B; Du Y; Liu C; Li Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater hyperspectral imaging system using a prism-grating-prism structure.
    Xue Q; Tian Z; Yang B; Liang J; Li C; Wang F; Li Q
    Appl Opt; 2021 Feb; 60(4):894-900. PubMed ID: 33690395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications.
    Johnson WR; Wilson DW; Bearman G
    Opt Lett; 2005 Jun; 30(12):1464-6. PubMed ID: 16007775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical design of an advanced Littrow-Offner spectrometer simultaneously off-axis in meridian and sagittal planes for ultraviolet imaging with high performance.
    Wu S; Huang C; Yu L; Xue H; Lin J
    Appl Opt; 2021 Nov; 60(32):10094-10100. PubMed ID: 34807114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-slit polarization-insensitive imaging spectrometer for wide-swath hyperspectral remote sensing from a geostationary orbit.
    Zhu J; Chen X; Zhao Z; Shen W
    Opt Express; 2021 Aug; 29(17):26851-26864. PubMed ID: 34615112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digital sensor simulator of the pushbroom Offner hyperspectral imaging spectrometer.
    Tao D; Jia G; Yuan Y; Zhao H
    Sensors (Basel); 2014 Dec; 14(12):23822-42. PubMed ID: 25615727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on Small-Type and High-Spectral-Resolution Grating Monochromator].
    Yang ZP; Tang YG; Bayanheshig ; Cui JC; Yang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):273-8. PubMed ID: 27228781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction method for designing a spectrometer with variable spectral resolution and wide bandwidth using multiple off-axis convex gratings.
    Hu Y; Chang J; Ji Z; Chen W; Li Y; Li D
    Opt Express; 2022 Jan; 30(2):2472-2486. PubMed ID: 35209386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.