These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35471502)
1. A flexible tissue-carbon nanocoil-carbon nanotube-based humidity sensor with high performance and durability. Li C; Zhang Y; Yang S; Zhao H; Guo Y; Cong T; Huang H; Fan Z; Liang H; Pan L Nanoscale; 2022 May; 14(18):7025-7038. PubMed ID: 35471502 [TBL] [Abstract][Full Text] [Related]
2. Cellulose Nanofiber/Carbon Nanotube Dual Network-Enabled Humidity Sensor with High Sensitivity and Durability. Zhu P; Ou H; Kuang Y; Hao L; Diao J; Chen G ACS Appl Mater Interfaces; 2020 Jul; 12(29):33229-33238. PubMed ID: 32608963 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Zhu P; Kuang Y; Wei Y; Li F; Ou H; Jiang F; Chen G Chem Eng J; 2021 Jan; 404():127105. PubMed ID: 32994751 [TBL] [Abstract][Full Text] [Related]
4. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method. Pan T; Yu Z; Huang F; Yao H; Hu G; Tang C; Gu J ACS Appl Mater Interfaces; 2023 Jun; 15(23):28248-28257. PubMed ID: 37262400 [TBL] [Abstract][Full Text] [Related]
5. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. Zhu P; Liu Y; Fang Z; Kuang Y; Zhang Y; Peng C; Chen G Langmuir; 2019 Apr; 35(14):4834-4842. PubMed ID: 30892906 [TBL] [Abstract][Full Text] [Related]
6. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. Wu J; Sun YM; Wu Z; Li X; Wang N; Tao K; Wang GP ACS Appl Mater Interfaces; 2019 Jan; 11(4):4242-4251. PubMed ID: 30652470 [TBL] [Abstract][Full Text] [Related]
7. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. Tachibana S; Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Abe M; Miura R; Watanabe Y; Kumaki D; Tokito S ACS Appl Mater Interfaces; 2022 Feb; 14(4):5721-5728. PubMed ID: 35067045 [TBL] [Abstract][Full Text] [Related]
8. Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity. Zhu P; Wei Y; Kuang Y; Qian Y; Liu Y; Jiang F; Chen G Carbohydr Polym; 2022 Sep; 292():119684. PubMed ID: 35725212 [TBL] [Abstract][Full Text] [Related]
9. Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring. Kim HS; Kang JH; Hwang JY; Shin US Nano Converg; 2022 Aug; 9(1):35. PubMed ID: 35913549 [TBL] [Abstract][Full Text] [Related]
10. Wearable Gas Sensor Based on Reticular Antimony-Doped SnO Li Y; Zhang Y; Zhou Y; Zhao L; Yan X; Liu F; Lu G; Sun P ACS Sens; 2023 Nov; 8(11):4132-4142. PubMed ID: 37938135 [TBL] [Abstract][Full Text] [Related]
11. A Flexible Humidity Sensor with Wide Range, High Linearity, and Fast Response Based on Ultralong Na Wan Y; Zhang S; Zhao C; Deng M; Ren D; Huang F ACS Appl Mater Interfaces; 2023 Apr; 15(13):16865-16873. PubMed ID: 36946616 [TBL] [Abstract][Full Text] [Related]
12. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring. Tang H; Li Y; Ye H; Hu F; Gao C; Tao L; Tu T; Gou G; Chen X; Fan X; Ren T; Zhang G Nanotechnology; 2020 Jan; 31(5):055501. PubMed ID: 31484166 [TBL] [Abstract][Full Text] [Related]
13. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Lan L; Le X; Dong H; Xie J; Ying Y; Ping J Biosens Bioelectron; 2020 Oct; 165():112360. PubMed ID: 32729493 [TBL] [Abstract][Full Text] [Related]
14. Fast-speed, Highly Sensitive, Flexible Humidity Sensors Based on a Printable Composite of Carbon Nanotubes and Hydrophilic Polymers. Ding S; Yin T; Zhang S; Yang D; Zhou H; Guo S; Li Q; Wang Y; Yang Y; Peng B; Yang R; Jiang Z Langmuir; 2023 Jan; 39(4):1474-1481. PubMed ID: 36641772 [TBL] [Abstract][Full Text] [Related]
15. A fast response and highly sensitive flexible humidity sensor based on a nanocomposite film of MoS Ge G; Ke N; Ma H; Ding J; Zhang W; Fan X Nanoscale; 2024 Oct; 16(38):17804-17816. PubMed ID: 39158201 [TBL] [Abstract][Full Text] [Related]
16. Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. Chen X; Liu H; Zheng Y; Zhai Y; Liu X; Liu C; Mi L; Guo Z; Shen C ACS Appl Mater Interfaces; 2019 Nov; 11(45):42594-42606. PubMed ID: 31618002 [TBL] [Abstract][Full Text] [Related]
17. Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. Kim S; Amjadi M; Lee TI; Jeong Y; Kwon D; Kim MS; Kim K; Kim TS; Oh YS; Park I ACS Appl Mater Interfaces; 2019 Jul; 11(26):23639-23648. PubMed ID: 31180635 [TBL] [Abstract][Full Text] [Related]
18. An All-Printed, Fast-Response Flexible Humidity Sensor Based on Hexagonal-WO Guo P; Tian B; Liang J; Yang X; Tang G; Li Q; Liu Q; Zheng K; Chen X; Wu W Adv Mater; 2023 Oct; 35(41):e2304420. PubMed ID: 37358069 [TBL] [Abstract][Full Text] [Related]
19. Miniaturized Flexible Non-Contact Interface Based on Heat Shrinkage Technology. Xiao Y; Zhang Y; Qu C; Zhang S; Liu H; Xu Y Small Methods; 2023 Sep; 7(9):e2300316. PubMed ID: 37289103 [TBL] [Abstract][Full Text] [Related]
20. Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. Wang Y; Zhang L; Zhou J; Lu A ACS Appl Mater Interfaces; 2020 Feb; 12(6):7631-7638. PubMed ID: 31961643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]