BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35471565)

  • 1. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores.
    Réveillon T; Rota T; Chauvet É; Lecerf A; Sentis A
    J Anim Ecol; 2022 Oct; 91(10):1975-1987. PubMed ID: 35471565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat it up to slow it down: Individual energetics reveal how warming reduces stream decomposition.
    Jochum M
    J Anim Ecol; 2022 Oct; 91(10):1944-1947. PubMed ID: 36193670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming and shifts in litter quality drive multiple responses in freshwater detritivore communities.
    Benavides-Gordillo S; González AL; Kersch-Becker MF; Moretti MS; Moi DA; Aidar MPM; Romero GQ
    Sci Rep; 2024 May; 14(1):11137. PubMed ID: 38750097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming overrides eutrophication effects on leaf litter decomposition in stream microcosms.
    Pérez J; Cornejo A; Alonso A; Guerra A; García G; Nieto C; Correa-Araneda F; Rojo D; Boyero L
    Environ Pollut; 2023 Sep; 332():121966. PubMed ID: 37290635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of climate-related change in vegetation on leaf litter consumption and energy storage by Gammarus pulex from Continental or Mediterranean populations.
    Foucreau N; Piscart C; Puijalon S; Hervant F
    PLoS One; 2013; 8(10):e77242. PubMed ID: 24204778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum.
    Bundschuh M; Hahn T; Gessner MO; Schulz R
    Ecotoxicology; 2017 May; 26(4):547-554. PubMed ID: 28285374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition.
    Buckingham S; Murphy N; Gibb H
    PLoS One; 2015; 10(4):e0124556. PubMed ID: 25880062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
    Follstad Shah JJ; Kominoski JS; Ardón M; Dodds WK; Gessner MO; Griffiths NA; Hawkins CP; Johnson SL; Lecerf A; LeRoy CJ; Manning DWP; Rosemond AD; Sinsabaugh RL; Swan CM; Webster JR; Zeglin LH
    Glob Chang Biol; 2017 Aug; 23(8):3064-3075. PubMed ID: 28039909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition.
    Tonin AM; Pozo J; Monroy S; Basaguren A; Pérez J; Gonçalves JF; Pearson R; Cardinale BJ; Boyero L
    J Anim Ecol; 2018 Sep; 87(5):1465-1474. PubMed ID: 29928758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores.
    Jeplawy JR; Cooper HF; Marks J; Lindroth RL; Andrews MI; Compson ZG; Gehring C; Hultine KR; Grady K; Whitham TG; Allan GJ; Best RJ
    Ecology; 2021 Oct; 102(10):e03461. PubMed ID: 34236702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive responses of grass litter decomposition to warming, nitrogen addition and detritivore access in a temperate old field.
    Moise ER; Henry HA
    Oecologia; 2014 Dec; 176(4):1151-60. PubMed ID: 25214243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical traits as drivers of trophic interaction between macrodetritivores and leaf litter.
    Marchand T; Pey B; Pautot C; Lecerf A
    Oecologia; 2024 Mar; 204(3):641-651. PubMed ID: 38472472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.
    Boyero L; Pearson RG; Gessner MO; Barmuta LA; Ferreira V; Graça MA; Dudgeon D; Boulton AJ; Callisto M; Chauvet E; Helson JE; Bruder A; Albariño RJ; Yule CM; Arunachalam M; Davies JN; Figueroa R; Flecker AS; Ramírez A; Death RG; Iwata T; Mathooko JM; Mathuriau C; Gonçalves JF; Moretti MS; Jinggut T; Lamothe S; M'Erimba C; Ratnarajah L; Schindler MH; Castela J; Buria LM; Cornejo A; Villanueva VD; West DC
    Ecol Lett; 2011 Mar; 14(3):289-94. PubMed ID: 21299824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density constrains cascading consequences of warming and nitrogen from invertebrate growth to litter decomposition.
    Hines J; Reyes M; Gessner MO
    Ecology; 2016 Jul; 97(7):1635-1642. PubMed ID: 27859157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.
    Galic N; Grimm V; Forbes VE
    Glob Chang Biol; 2017 Aug; 23(8):2973-2989. PubMed ID: 27935184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning.
    López-Rojo N; Pérez J; Alonso A; Correa-Araneda F; Boyero L
    Environ Pollut; 2020 Apr; 259():113898. PubMed ID: 31927275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key plant species and detritivores drive diversity effects on instream leaf litter decomposition more than functional diversity: A microcosm study.
    Rubio-Ríos J; Pérez J; Salinas MJ; Fenoy E; López-Rojo N; Boyero L; Casas JJ
    Sci Total Environ; 2021 Dec; 798():149266. PubMed ID: 34340079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of warming and microplastics on metabolism but not feeding rates of a key freshwater detritivore.
    Kratina P; Watts TJ; Green DS; Kordas RL; O'Gorman EJ
    Environ Pollut; 2019 Dec; 255(Pt 2):113259. PubMed ID: 31563782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.