These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35471817)

  • 41. Toxin-Blocking Textiles: Rapid, Benign, Roll-to-Roll Production of Robust MOF-Fabric Composites for Organophosphate Separation and Hydrolysis.
    Morgan SE; Willis ML; Dianat G; Peterson GW; Mahle JJ; Parsons GN
    ChemSusChem; 2023 Jan; 16(2):e202201744. PubMed ID: 36288505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review.
    Zhang Y; Tao CA
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO
    Barton HF; Davis AK; Parsons GN
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14690-14701. PubMed ID: 32027111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities.
    Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS
    J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploiting Microwave Chemistry for Activation of Metal-Organic Frameworks.
    Lee EJ; Bae J; Choi KM; Jeong NC
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35155-35161. PubMed ID: 31483139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.
    López-Maya E; Montoro C; Rodríguez-Albelo LM; Aznar Cervantes SD; Lozano-Pérez AA; Cenís JL; Barea E; Navarro JA
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6790-4. PubMed ID: 25951010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation.
    Gu C; Yu Z; Liu J; Sholl DS
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11039-11049. PubMed ID: 33646743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation.
    Kalaj M; Palomba JM; Bentz KC; Cohen SM
    Chem Commun (Camb); 2019 May; 55(37):5367-5370. PubMed ID: 30994655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant.
    Zhao J; Chen R; Huang J; Wang F; Tao CA; Wang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40863-40871. PubMed ID: 34405983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants.
    Seo JY; Cho KY; Lee JH; Lee MW; Baek KY
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32778-32787. PubMed ID: 32589390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laponite-Incorporated UiO-66-NH
    Browe MA; Landers J; Tovar TM; Mahle JJ; Balboa A; Gordon WO; Fukuto M; Karwacki CJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10500-10512. PubMed ID: 33606491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile Recycling Strategy of Dyed Polyester Waste by Template-Based Synthesis of UiO-66 for Value-Added Transformation into Self-detoxifying Fabrics.
    Chang S; Jin S; Kim J
    ACS Omega; 2024 Apr; 9(13):15074-15084. PubMed ID: 38585128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture.
    Zhang N; Yuan LY; Guo WL; Luo SZ; Chai ZF; Shi WQ
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25216-25224. PubMed ID: 28699737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assorted functionality-appended UiO-66-NH
    Tripathi S; Sreenivasulu B; Suresh A; Rao CVSB; Sivaraman N
    RSC Adv; 2020 Apr; 10(25):14650-14661. PubMed ID: 35497126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space.
    Terban MW; Ghose SK; Plonka AM; Troya D; Juhás P; Dinnebier RE; Mahle JJ; Gordon WO; Frenkel AI
    Commun Chem; 2021 Jan; 4(1):2. PubMed ID: 36697507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Water-Stable Chemical-Protective Textiles via Euhedral Surface-Oriented 2D Cu-TCPP Metal-Organic Frameworks.
    Lee DT; Jamir JD; Peterson GW; Parsons GN
    Small; 2019 Mar; 15(10):e1805133. PubMed ID: 30707495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defective MOF-74 with ancillary open metal sites for the enhanced adsorption of chemical warfare agent simulants.
    Lee S; Oh S; Lee G; Oh M
    Dalton Trans; 2023 Aug; 52(34):12143-12151. PubMed ID: 37584168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.
    Niu Z; Fan Z; Pham T; Verma G; Forrest KA; Space B; Thallapally PK; Al-Enizi AM; Ma S
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202117807. PubMed ID: 35020976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. UiO-66-NH
    Zhang X; Sun Y; Liu Y; Zhai Z; Guo S; Peng L; Qin Y; Li C
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39976-39984. PubMed ID: 34379383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.