These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35471829)

  • 1. Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers.
    Vakurov A; Drummond-Brydson R; William N; Sanver D; Bastús N; Moriones OH; Puntes V; Nelson AL
    Langmuir; 2022 May; 38(18):5372-5380. PubMed ID: 35471829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of glass plates and silica particles by phospholipid adsorption.
    Chibowski E; Delgado AV; Rudzka K; Szcześ A; Hołysz L
    J Colloid Interface Sci; 2011 Jan; 353(1):281-9. PubMed ID: 20932536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical modeling of the silica nanoparticle-biomembrane interaction.
    Vakurov A; Brydson R; Nelson A
    Langmuir; 2012 Jan; 28(2):1246-55. PubMed ID: 22142270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into the uptake of SiO
    Yuan S; Zhang H; Wang X; Zhang H; Zhang Z; Yuan S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112250. PubMed ID: 34861541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models.
    Ormategui N; Zhang S; Loinaz I; Brydson R; Nelson A; Vakurov A
    Bioelectrochemistry; 2012 Oct; 87():211-9. PubMed ID: 22249139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO nanoparticle interactions with phospholipid monolayers.
    Vakurov A; Guillermo Mokry ; Drummond-Brydson R; Wallace R; Svendsen C; Nelson A
    J Colloid Interface Sci; 2013 Aug; 404():161-8. PubMed ID: 23743048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica supported phospholipid layers doped with GM1: A comparison between different methods.
    Santos O; Arnebrant T
    J Colloid Interface Sci; 2009 Jan; 329(2):213-21. PubMed ID: 18950789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of silica nanoparticle geometry on the interfacial interactions of organic molecules: a molecular dynamics study.
    Rama P; Abbas Z
    Phys Chem Chem Phys; 2022 Feb; 24(6):3713-3721. PubMed ID: 35080551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles.
    Leibe R; Fritsch-Decker S; Gussmann F; Wagbo AM; Wadhwani P; Diabaté S; Wenzel W; Ulrich AS; Weiss C
    Small; 2023 Aug; 19(34):e2207593. PubMed ID: 37098631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of amphotericin B and saturated or unsaturated phospholipid monolayers containing cholesterol or ergosterol at the air-water interface.
    Wang J; Ma Y; Hou S; Miao Z; Ma Q
    Biophys Chem; 2020 Mar; 258():106317. PubMed ID: 31918025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the adsorption of phospholipid vesicles to a silicon dioxide surface using Langmuir kinetics.
    Alhallak I; Kett PJN
    Phys Chem Chem Phys; 2022 Jan; 24(4):2139-2149. PubMed ID: 34994358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.
    Kalia P; Brooks RA; Kinrade SD; Morgan DJ; Brown AP; Rushton N; Jugdaohsingh R
    PLoS One; 2016; 11(2):e0144780. PubMed ID: 26863624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of two- and three-dimensional particle arrays by manipulating the hydrophobicity of silica nanospheres.
    Wang W; Gu B
    J Phys Chem B; 2005 Dec; 109(47):22175-80. PubMed ID: 16853885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic properties of silica nanoparticle monolayers at the air-water interface.
    Zang DY; Rio E; Langevin D; Wei B; Binks BP
    Eur Phys J E Soft Matter; 2010 Feb; 31(2):125-34. PubMed ID: 20151313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of ethanol-induced interdigitation in supported phospholipid bilayers on silica surfaces.
    Miszta A; van Deursen B; Schoufs R; Hof M; Hermens WT
    Langmuir; 2008 Jan; 24(1):19-21. PubMed ID: 18044939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero valent metal loaded silica nanoparticles for the removal of TNT from water.
    Mangal H; Saxena A; Shukla N; Rai PK; Rawat AS; Kumar V; Gupta V; Datta M
    Water Sci Technol; 2017 Feb; 75(3-4):716-726. PubMed ID: 28192365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.