These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35471886)
21. DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site. Du Z; Xiao X; Uversky VN J Biomol Struct Dyn; 2022 Jun; 40(9):4250-4258. PubMed ID: 33272122 [TBL] [Abstract][Full Text] [Related]
22. A deep learning framework for modeling structural features of RNA-binding protein targets. Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480 [TBL] [Abstract][Full Text] [Related]
23. MAHyNet: Parallel Hybrid Network for RNA-Protein Binding Sites Prediction Based on Multi-Head Attention and Expectation Pooling. Wang W; Sun Z; Liu D; Zhang H; Li J; Wang X; Zhou Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):416-427. PubMed ID: 38363672 [TBL] [Abstract][Full Text] [Related]
24. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model. Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367 [TBL] [Abstract][Full Text] [Related]
25. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor. Uhl M; Tran VD; Heyl F; Backofen R Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415 [TBL] [Abstract][Full Text] [Related]
26. aPRBind: protein-RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks. Liu Y; Gong W; Zhao Y; Deng X; Zhang S; Li C Bioinformatics; 2021 May; 37(7):937-942. PubMed ID: 32821925 [TBL] [Abstract][Full Text] [Related]
27. RNA-Protein Binding Sites Prediction via Multi Scale Convolutional Gated Recurrent Unit Networks. Shen Z; Deng SP; Huang DS IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1741-1750. PubMed ID: 30990191 [TBL] [Abstract][Full Text] [Related]
28. Classification-based prediction of network connectivity robustness. Lou Y; Wu R; Li J; Wang L; Tang CB; Chen G Neural Netw; 2023 Jan; 157():136-146. PubMed ID: 36334535 [TBL] [Abstract][Full Text] [Related]
29. AC-Caps: Attention Based Capsule Network for Predicting RBP Binding Sites of LncRNA. Song J; Tian S; Yu L; Xing Y; Yang Q; Duan X; Dai Q Interdiscip Sci; 2020 Dec; 12(4):414-423. PubMed ID: 32572768 [TBL] [Abstract][Full Text] [Related]
30. Computational Prediction of RNA-Binding Proteins and Binding Sites. Si J; Cui J; Cheng J; Wu R Int J Mol Sci; 2015 Nov; 16(11):26303-17. PubMed ID: 26540053 [TBL] [Abstract][Full Text] [Related]
31. Neural networks with circular filters enable data efficient inference of sequence motifs. Blum CF; Kollmann M Bioinformatics; 2019 Oct; 35(20):3937-3943. PubMed ID: 30918943 [TBL] [Abstract][Full Text] [Related]
32. Using multiple convolutional window scanning of convolutional neural network for an efficient prediction of ATP-binding sites in transport proteins. Nguyen TT; Chen S; Ho QT; Ou YY Proteins; 2022 Jul; 90(7):1486-1492. PubMed ID: 35246878 [TBL] [Abstract][Full Text] [Related]
33. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Wu H; Pan X; Yang Y; Shen HB Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803 [TBL] [Abstract][Full Text] [Related]
34. Deep neural networks for spatiotemporal PM Kow PY; Chang LC; Lin CY; Chou CC; Chang FJ Environ Pollut; 2022 Aug; 306():119348. PubMed ID: 35487466 [TBL] [Abstract][Full Text] [Related]
35. DeepBtoD: Improved RNA-binding proteins prediction via integrated deep learning. Du X; Zhao X; Zhang Y J Bioinform Comput Biol; 2022 Aug; 20(4):2250006. PubMed ID: 35451938 [TBL] [Abstract][Full Text] [Related]
36. Improving the prediction of DNA-protein binding by integrating multi-scale dense convolutional network with fault-tolerant coding. Yin YH; Shen LC; Jiang Y; Gao S; Song J; Yu DJ Anal Biochem; 2022 Nov; 656():114878. PubMed ID: 36049552 [TBL] [Abstract][Full Text] [Related]
37. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. Niu M; Zou Q; Lin C PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187 [TBL] [Abstract][Full Text] [Related]
38. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick. Zhang SW; Zhang XX; Fan XN; Li WN Anal Biochem; 2020 Jul; 601():113767. PubMed ID: 32454029 [TBL] [Abstract][Full Text] [Related]
39. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network. Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638 [TBL] [Abstract][Full Text] [Related]
40. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins. Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]