These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35471886)

  • 41. Multichannel Two-Dimensional Convolutional Neural Network Based on Interactive Features and Group Strategy for Chinese Sentiment Analysis.
    Wang L; Meng Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions.
    Wang L; You ZH; Huang DS; Zhou F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):972-980. PubMed ID: 30296240
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Masked convolutional neural network for supervised learning problems.
    Liu LY; Liu Y; Zhu H
    Stat; 2020; 9(1):. PubMed ID: 33408423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Attention-Based Multi-Scale Convolutional Neural Network (A+MCNN) for Multi-Class Classification in Road Images.
    Eslami E; Yun HB
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction.
    Yu Y; Ding P; Gao H; Liu G; Zhang F; Yu B
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36748992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction.
    Du X; Xue Z
    J Biomed Inform; 2022 Dec; 136():104231. PubMed ID: 36309196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inferring RNA-binding protein target preferences using adversarial domain adaptation.
    Liu Y; Li R; Luo J; Zhang Z
    PLoS Comput Biol; 2022 Feb; 18(2):e1009863. PubMed ID: 35202389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep neural networks for interpreting RNA-binding protein target preferences.
    Ghanbari M; Ohler U
    Genome Res; 2020 Feb; 30(2):214-226. PubMed ID: 31992613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRBP-HFEF: Prediction of RBP-Binding Sites on circRNAs Based on Hierarchical Feature Expansion and Fusion.
    Ma Z; Sun ZL; Liu M
    Interdiscip Sci; 2023 Sep; 15(3):465-479. PubMed ID: 37233959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks.
    Yuan L; Yang Y
    Front Genet; 2020; 11():632861. PubMed ID: 33552144
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fully Connected Multi-Kernel Convolutional Neural Network Based on Alzheimer's Disease Diagnosis.
    Deng L; Wang Y;
    J Alzheimers Dis; 2023; 92(1):209-228. PubMed ID: 36710670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EDCNN: identification of genome-wide RNA-binding proteins using evolutionary deep convolutional neural network.
    Wang Y; Yang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 Jan; 38(3):678-686. PubMed ID: 34694393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CircSLNN: Identifying RBP-Binding Sites on circRNAs
    Ju Y; Yuan L; Yang Y; Zhao H
    Front Genet; 2019; 10():1184. PubMed ID: 31824574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
    Brannan KW; Jin W; Huelga SC; Banks CA; Gilmore JM; Florens L; Washburn MP; Van Nostrand EL; Pratt GA; Schwinn MK; Daniels DL; Yeo GW
    Mol Cell; 2016 Oct; 64(2):282-293. PubMed ID: 27720645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-Attention Based Neural Network for Predicting RNA-Protein Binding Sites.
    Wang X; Zhang M; Long C; Yao L; Zhu M
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1469-1479. PubMed ID: 36067103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Chou's 5-Step Rule to Predict DNA-Protein Binding with Multi-scale Complementary Feature.
    Du X; Hu J; Li S
    J Proteome Res; 2021 Mar; 20(3):1639-1656. PubMed ID: 33522829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.