These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35472021)

  • 1. Sex-Specific Variance in Fitness and the Efficacy of Selection.
    Singh A; Agrawal AF
    Am Nat; 2022 May; 199(5):587-602. PubMed ID: 35472021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inbreeding reveals stronger net selection on Drosophila melanogaster males: implications for mutation load and the fitness of sexual females.
    Mallet MA; Chippindale AK
    Heredity (Edinb); 2011 Jun; 106(6):994-1002. PubMed ID: 21119701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Male-biased fitness effects of spontaneous mutations in Drosophila melanogaster.
    Sharp NP; Agrawal AF
    Evolution; 2013 Apr; 67(4):1189-95. PubMed ID: 23550766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The condition dependency of fitness in males and females: the fitness consequences of juvenile diet assessed in environments differing in key adult resources.
    Zikovitz AE; Agrawal AF
    Evolution; 2013 Oct; 67(10):2849-60. PubMed ID: 24094338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype × Environment interaction and the evolution of sexual dimorphism: adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster.
    De Lisle SP
    J Evol Biol; 2024 Jul; 37(7):770-778. PubMed ID: 38668688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of parasites on sex differences in selection.
    Sharp NP; Vincent CM
    Heredity (Edinb); 2015 Apr; 114(4):367-72. PubMed ID: 25649503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic drift in antagonistic genes leads to divergence in sex-specific fitness between experimental populations of Drosophila melanogaster.
    Hesketh J; Fowler K; Reuter M
    Evolution; 2013 May; 67(5):1503-10. PubMed ID: 23617925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the sex-specific genetic architecture of fitness in Drosophila melanogaster.
    Singh A; Hasan A; Agrawal AF
    Evolution; 2023 Sep; 77(9):2015-2028. PubMed ID: 37329263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective population size and the efficacy of selection on the X chromosomes of two closely related Drosophila species.
    Andolfatto P; Wong KM; Bachtrog D
    Genome Biol Evol; 2011; 3():114-28. PubMed ID: 21173424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness.
    Allen SL; McGuigan K; Connallon T; Blows MW; Chenoweth SF
    Evolution; 2017 Oct; 71(10):2398-2409. PubMed ID: 28722119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females.
    Mallet MA; Bouchard JM; Kimber CM; Chippindale AK
    BMC Evol Biol; 2011 Jun; 11():156. PubMed ID: 21645375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental variance in male mating success modulates the positive versus negative impacts of sexual selection on genetic load.
    Tschol M; Reid JM; Bocedi G
    J Evol Biol; 2023 Sep; 36(9):1242-1254. PubMed ID: 37497848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental test of the mutation-selection balance model for the maintenance of genetic variance in fitness components.
    Sharp NP; Agrawal AF
    Proc Biol Sci; 2018 Nov; 285(1890):. PubMed ID: 30404880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-specific selection under environmental stress in seed beetles.
    Martinossi-Allibert I; Arnqvist G; Berger D
    J Evol Biol; 2017 Jan; 30(1):161-173. PubMed ID: 27749005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexual selection has minimal impact on effective population sizes in species with high rates of random offspring mortality: An empirical demonstration using fitness distributions.
    Pischedda A; Friberg U; Stewart AD; Miller PM; Rice WR
    Evolution; 2015 Oct; 69(10):2638-47. PubMed ID: 26374275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex-specific fitness consequences of nutrient intake and the evolvability of diet preferences.
    Reddiex AJ; Gosden TP; Bonduriansky R; Chenoweth SF
    Am Nat; 2013 Jul; 182(1):91-102. PubMed ID: 23778229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Quality Affects the Rate of Male and Female Reproductive Aging Differently in Drosophila melanogaster.
    Brengdahl M; Kimber CM; Maguire-Baxter J; Malacrinò A; Friberg U
    Am Nat; 2018 Dec; 192(6):761-772. PubMed ID: 30444654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The action of purifying selection, mutation and drift on fitness epistatic systems.
    Pérez-Figueroa A; Caballero A; García-Dorado A; López-Fanjul C
    Genetics; 2009 Sep; 183(1):299-313. PubMed ID: 19596902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex, mutation and fitness: asymmetric costs and routes to recovery through compensatory evolution.
    Pischedda A; Chippindale A
    J Evol Biol; 2005 Jul; 18(4):1115-22. PubMed ID: 16033585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexual selection against deleterious mutations via variable male search success.
    Maclellan K; Whitlock MC; Rundle HD
    Biol Lett; 2009 Dec; 5(6):795-7. PubMed ID: 19625301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.