These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35472462)

  • 1. Polyaniline coated MOF-derived Mn
    Li Y; Yin Y; Xie F; Zhao G; Han L; Zhang L; Lu T; Amin MA; Yamauchi Y; Xu X; Zhu G; Pan L
    Environ Res; 2022 Sep; 212(Pt C):113331. PubMed ID: 35472462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu-based MOF-derived architecture with Cu/Cu
    Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L
    Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals.
    Shi W; Liu X; Deng T; Huang S; Ding M; Miao X; Zhu C; Zhu Y; Liu W; Wu F; Gao C; Yang SW; Yang HY; Shen J; Cao X
    Adv Mater; 2020 Aug; 32(33):e1907404. PubMed ID: 32656808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide-activated mesoporous date palm fronds carbon integrated with MnO
    Hussain H; Jilani A; Salah N; Memić A; Ansari MO; Alshahrie A
    Water Environ Res; 2024 May; 96(6):e11038. PubMed ID: 38797821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination.
    Liu H; Zhang J; Xu X; Wang Q
    Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline.
    Tian S; Zhang Z; Zhang X; Ken Ostrikov K
    J Colloid Interface Sci; 2019 Mar; 537():247-255. PubMed ID: 30448645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization.
    Xu L; Ding Z; Chen Y; Xu X; Liu Y; Li J; Lu T; Pan L
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):372-381. PubMed ID: 36332430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced brackish water desalination in capacitive deionization with composite Zn-BTC MOF-incorporated electrodes.
    Ghorbanian A; Rowshanzamir S; Mehri F
    Sci Rep; 2024 Jul; 14(1):14999. PubMed ID: 38951566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination.
    Liu N; Zhang Y; Xu X; Wang Y
    Dalton Trans; 2020 May; 49(19):6321-6327. PubMed ID: 32342067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Battery-Type Supercapacitors Based on Self-Oriented Growth of Nanorods/Nanospheres Composite Assembled on Self-Standing Conductive GO/CNF Frameworks.
    Roy N; Rajasekhara Reddy G; Pallavolu MR; Nallapureddy RR; Dhananjaya M; Sai Kumar A; Banerjee AN; Min BK; Barai HR; Joo SW
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34859-34879. PubMed ID: 38940603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays.
    Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X
    Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review.
    Lin P; Liao M; Yang T; Sheng X; Wu Y; Xu X
    Front Chem; 2020; 8():575350. PubMed ID: 33330363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO
    Tan G; Lu S; Xu N; Gao D; Zhu X
    Environ Sci Technol; 2020 May; 54(9):5843-5852. PubMed ID: 32243751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Durable Sodium, Chloride-doped Iron Oxide-Hydroxide Nanohybrid-Promoted Capacitive Deionization of Saline Water via Synergetic Pseudocapacitive Process.
    Zhao J; Wu B; Huang X; Sun Y; Zhao Z; Ye M; Wen X
    Adv Sci (Weinh); 2022 Sep; 9(25):e2201678. PubMed ID: 35818682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination.
    Luo L; He Q; Chen S; Yang D; Chen Y
    Environ Res; 2022 May; 208():112727. PubMed ID: 35063431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Selective Recovery of Phosphorus from Wastewater via Capacitive Deionization Enabled by Ferrocene-polyaniline-Functionalized Carbon Nanotube Electrodes.
    Gao F; Li X; Shi W; Wang Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31962-31972. PubMed ID: 35802538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudocapacitive Deionization of Saltwater by Mn
    Chen PA; Liu SH; Wang HP
    ACS Omega; 2023 Apr; 8(14):13315-13322. PubMed ID: 37065037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.